Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Clin Med ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930025

ABSTRACT

Objective: The objective of this work was to assess the effect of physical therapy in patients with somatosensory tinnitus (ST) and explore the influence of physical therapy on clinical variables obtained before treatment. Methods: A total of 43 patients with ST were randomized to the immediate-start group (n = 20) and delayed-start group (n = 23). All patients received physical therapy for 1 week (seven sessions). Each session lasted 60 min. The Visual Analogue Scale (VAS), Tinnitus Handicap Inventory (THI), and numerical pain rating scale (NPRS) scores were documented at baseline and after treatment (week 1) for all patients. For subjects in the immediate-start group, the THI, VAS, and NPRS scores were measured after therapy (weeks 6, 9, and 12, respectively). Medical history characteristic functional activity scale (HCFA) scores were measured at baseline to assess the association between somatic symptoms and tinnitus. Results: At week 1, VAS, THI, and NPRS scores of patients in the immediate-start group were improved by 1.25 ± 1.59, 11.10 ± 15.10, and 0.95 ± 1.54 points, respectively, and were significantly higher than those in the delayed-start group (p < 0.05). The change in VAS, THI, and NPRS scores in the treatment group was significantly positively correlated with the scores of the HCFA before treatment (r = 0.786, p < 0.001; r = 0.680, p = 0.001; r = 0.796, p < 0.001). There was no significant difference in THI, VAS, and NPRS scores among patients in the immediate-start group between weeks 1, 6, 9, and 12 after treatment (p > 0.05). Conclusions: Although more participants were necessary in the further study, the study implies that physical therapy can reduce physical pain, improve tinnitus symptoms, and quality of life in ST patients without hearing loss, and the short-term curative effect is stable, especially for tinnitus patients with clear somatic symptoms.

2.
J Reprod Immunol ; 162: 104213, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364342

ABSTRACT

Endometriosis (EMS) is known to be closely associated with inflammation. We evaluate the possible mechanism linking the PI3K/AKT signaling pathway with pyroptosis and inflammation in EMS. We collected 30 patients undergoing laparoscopic for endometriosis as the EMS group and those undergoing surgery for uterine fibroids as the control group, from whom we collected serum, normal endometrium, eutopic endometrium and ectopic endometrium. Transmission electron microscopy (TEM) was used to observe the internal structure of endometrial cells. Western Blot was used to detect the protein expression of PI3K, P-PI3K, AKT, P-AKT, NLRP3, Caspase-1, GSDMD, and GSDMD-N. Immunohistochemistry (IHC) staining was used to detect the expression of PI3K, AKT, NLRP3, Caspase-1, GSDMD, and GSDMD-N proteins. Immunofluorescence (IF) staining was used to observe the expression of GSDMD-N. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the mRNA levels of PI3K, AKT, NLRP3, Caspase-1, GSDMD, and GSDMD-N. ELISA was used to detect serum levels of IL-1ß, IL-18, TLR4, and NF-κB. We found that activation of PI3K/AKT signaling pathway in endometriosis significantly increased the level of cellular pyroptosis and inflammatory factors. Our results suggest that there is a positive correlation between the PI3K/AKT signaling pathway and pyroptosisas well as inflammation in EMS patients.


Subject(s)
Endometriosis , Pyroptosis , Female , Humans , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Inflammation , Caspase 1 , Signal Transduction
3.
Small ; 19(46): e2303876, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37469229

ABSTRACT

Inadequate photo-generated charge separation, migration, and utilization efficiency limit the photocatalytic efficiency. Herein, a MoS2 /MIL-53(Fe) photocatalyst/activator with the S-scheme heterojunction structure is designed and the charge migration behavior is modulated by the internal electric field (IEF). The IEF intensity is enhanced to 40 mV by modulating band bending potential and the depletion layer length of MoS2 . The photo-generated electron migration process is boosted by constructing the electron migration bridge (Fe-O-S) and modulating the IEF as the driving force, confirmed by the density functional theory calculation. Compared with the pristine materials, the photocurrent density of MoS2 /MIL-53(Fe) is significantly enhanced 27.5 times. Contributed by the visible-light-driven cooperative catalytic degradation and the high-efficiency direct photo-generated electron reduction dichlorination process, satisfactory chlorinated antibiotics removal and detoxification performances are achieved. This study opens up new insights into the application of heterojunctions in photocatalytic activation of PDS in environmental remediation.

4.
J Ethnopharmacol ; 308: 116277, 2023 May 23.
Article in English | MEDLINE | ID: mdl-36806342

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Wenyang Huayu Decoction (BWHD) is a traditional Chinese medicine for tonifying kidney and warming Yang, thereby resolving blood stasis and relieving pain. BWHD can significantly improve the clinical symptoms of patients with endometriosis (EMs), but its mechanism is still unclear. AIM OF THE STUDY: We evaluated the expression and role of the SIRT1-FoxO-1 pathway and autophagy levels in EMs rats. The therapeutic effects and potential therapeutic mechanisms of BWHD were also investigated. METHODS: Twenty rats were randomized into the sham group and eighty rats were used for model establishment by autologous transplantation. After successful modeling, they were randomized into the model, BWHD, EX527+BWHD and EX527 groups, with 20 rats in each group. All rats were intragastrically administered with for 3 weeks. Localization of Sirtuin 1 (SIRT1), Forkhead boxO-1 (FoXO-1), Beclin-1, autophagy-related 5 (Atg5) and autophagy-related 7 (Atg7) was determined by immunohistochemical staining. The expression of the above proteins was determined by Western blot and their messenger RNA (mRNA) levels were detected by Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). RESULTS: The protein and mRNA expressions of FoXO-1, Beclin-1, Atg5 and Atg7 in the model group were markedly increased, while that of SIRT1 was markedly decreased relative to the sham group (p < 0.05 and p<0.01, respectively). Results showed that the protein and mRNA expressions of FoXO-1, Beclin-1, Atg5 and Atg7 in eutopic and ectopic endometrium of BWHD group were lower, while SIRT1 expression was higher than in the model group (p < 0.05 and p<0.01, respectively). Furthermore, protein and mRNA expression levels of FoXO-1, Beclin-1, Atg5 and Atg7 in eutopic and ectopic endometrium of EX527 group were higher, while SIRT1 level was significantly lower than in the model group (p < 0.05 and p < 0.01, respectively). The EX527-induced changes in protein and mRNA expressions were reversed in the EX527+BWHD group (p < 0.05 and p < 0.01, respectively). CONCLUSIONS: BWHD inhibits autophagy by up-regulating SIRT1 and down-regulating FoXO-1 expression in EMs via the SIRT1-FoXO-1 signaling pathway. Therefore, it is a potential treatment for EMs.


Subject(s)
Endometriosis , Humans , Female , Rats , Animals , Endometriosis/metabolism , Sirtuin 1/metabolism , Beclin-1/metabolism , Autophagy , RNA, Messenger
5.
Article in English | MEDLINE | ID: mdl-36437825

ABSTRACT

Endometriosis has been found to be closely related to autophagy. This study aimed to elucidate the possible mechanism of Bushen Wenyang Huayu Decoction (BWHD) in treating endometriosis (EMs) by targeting TLR4/NF-κB-mediated autophagy. Autologous grafting was used to generate the EMs model in rats. Once the model was developed, BWHD high-dose and low-dose groups received intragastric administration of BWHD, and the gestrinone group served as a positive control. Immunofluorescence labeling and Western blotting were used for the protein expression of toll-like receptor 4 (TLR4), nuclear transcription factor-κB (NF-κB), Beclin-1, and selective autophagy connector protein P62 (P62). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze mRNA levels of TLR4, NF-κB, Beclin-1, and P62. We found that BWHD significantly reduced the size of ectopic lesions in rats with EMs, regulated reproductive hormone levels, and alleviated the cell autophagy level. It suggested that BWHD could be an effective treatment of EMs by targeting TLR4/NF-κB signaling pathway.

6.
ACS Nano ; 16(11): 18898-18909, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36278901

ABSTRACT

Freshwater production is critical in terms of solving the global water shortage. Aiming at improving freshwater production capability and ensuring its quality, an interfacial charge-modulated MoS2/Ti3C2Tx-modified carbon fiber (CF/MoS2/Ti3C2Tx) penetrating electrode is designed. To maximize the desalination and degradation efficiencies of CF/MoS2/Ti3C2Tx, a photocatalytic component is introduced into the membrane capacitive deionization (PMCDI) device. High desalination capability is derived from the lamellar architecture structure of MoS2/Ti3C2Tx. Meanwhile, excellent degradation performance is due to the formation of two photoelctrocatalytic activity centers, directionally generating singlet oxygen (1O2) and hydroxyl radical (•OH). The intercalated Cl- (desalination) as the electron transfer bridge optimizes the charge distribution of MoS2/Ti3C2Tx, reinforcing the photoelectrocatalytic activity (degradation). The formation of the electron-deficient (desalination) and electron-rich (regeneration) regions at the terminated O atom of Ti3C2Tx accelerate the generations of •OH and 1O2, respectively. In perspective, a mutual promotion process of desalination and degradation is achieved for high-efficiency production of high-quality freshwater.

7.
Mol Ther Methods Clin Dev ; 25: 136, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35402631

ABSTRACT

[This corrects the article DOI: 10.1016/j.omtm.2021.08.007.].

8.
Mol Ther Methods Clin Dev ; 23: 78-86, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34631928

ABSTRACT

The current methods for detecting circulating tumor cells (CTCs) suffer from several drawbacks. We report a novel method that is based on a chimeric virus probe and can detect CTCs with extremely high specificity and sensitivity. Moreover, it exclusively detects live CTCs, and its detection efficacy is not impacted by the variation of epithelial cell adhesion molecule (EpCAM) expression. The chimeric virus probe is composed of a capsid from human papillomavirus that provides the detection with high specificity and an SV40-based genome that can amplify extensively inside CTCs and, hence, endows the detection with high sensitivity. Furthermore, different marker genes can be incorporated into the probe to provide detection with versatility. These unique capabilities will likely improve the validity and utility of this CTC detection in several clinical applications, which is one of the drawbacks suffered by many of the current CTC detection methods.

9.
Exp Ther Med ; 22(5): 1240, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34539836

ABSTRACT

Endometriosis (EM), a benign aseptic inflammatory disease, is associated with the presence of endometrial foci. Pain, one of its typical symptoms, has been reported as a constant stressor, but the etiology and pathogenesis of EM-associated pain are unclear. In the present study, eutopic and ectopic endometrium samples from women with EM (n=50) and normal endometrium samples from control subjects (n=20) were collected. Serum levels of prostaglandin E2 (PGE2), prostaglandin F2α (PGF2α) and bradykinin (BK) were measured using commercial ELISA kits. The expression of the BKB1 receptor (BKB1R) protein was evaluated by immunohistochemical staining and western blot assay. The mRNA expression of BKB1R was measured by reverse transcription-quantitative PCR. The results revealed that there was a substantial increase in the protein and mRNA expression of BKB1R, as well as the release of PGE2, PGF2α and BK in the blood, in the EM group compared with that in the control group. Moreover, PGE2, PGF2α and BK levels were significantly correlated with each other, as well as with the pain intensity of EM. The increased expression levels of BKB1R protein and mRNA were positively correlated with the pain degree of EM. Thus, these data indicated that BK and BKB1R were involved in the pathological onset of EM-associated pain and that they may play an important role in EM-related pain by inducing PGE2 and PGF2α. The data indicate a potential new therapeutic target for EM-related pain.

10.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34445669

ABSTRACT

Coronavirus Disease 2019 (COVID-19) remains a global health crisis, despite the development and success of vaccines in certain countries. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, uses its spike protein to bind to the human cell surface receptor angiotensin-converting enzyme 2 (ACE2), which allows the virus to enter the human body. Using our unique cell screening technology, we identified two ACE2-binding peptoid compounds and developed dimeric derivatives (ACE2P1D1 and ACE2P2D1) that effectively blocked spike protein-ACE2 interaction, resulting in the inhibition of SARS-CoV-2 pseudovirus entry into human cells. ACE2P1D1 and ACE2P2D1 also blocked infection by a D614G mutant pseudovirus. More importantly, these compounds do not decrease ACE2 expression nor its enzyme activity (which is important in normal blood pressure regulation), suggesting safe applicability in humans.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/prevention & control , Peptidyl-Dipeptidase A/metabolism , Peptoids/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , COVID-19/virology , Humans , MCF-7 Cells , Peptoids/metabolism , Protein Binding/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
11.
Angew Chem Weinheim Bergstr Ger ; 133(18): 10361-10366, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-34230707

ABSTRACT

The receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 spike (S) protein plays a central role in mediating the first step of virus infection to cause disease: virus binding to angiotensin-converting enzyme 2 (ACE2) receptors on human host cells. Therefore, S/RBD is an ideal target for blocking and neutralization therapies to prevent and treat coronavirus disease 2019 (COVID-19). Using a target-based selection approach, we developed oligonucleotide aptamers containing a conserved sequence motif that specifically targets S/RBD. Synthetic aptamers had high binding affinity for S/RBD-coated virus mimics (K D≈7 nM) and also blocked interaction of S/RBD with ACE2 receptors (IC50≈5 nM). Importantly, aptamers were able to neutralize S protein-expressing viral particles and prevent host cell infection, suggesting a promising COVID-19 therapy strategy.

12.
Angew Chem Int Ed Engl ; 60(18): 10273-10278, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33684258

ABSTRACT

The receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 spike (S) protein plays a central role in mediating the first step of virus infection to cause disease: virus binding to angiotensin-converting enzyme 2 (ACE2) receptors on human host cells. Therefore, S/RBD is an ideal target for blocking and neutralization therapies to prevent and treat coronavirus disease 2019 (COVID-19). Using a target-based selection approach, we developed oligonucleotide aptamers containing a conserved sequence motif that specifically targets S/RBD. Synthetic aptamers had high binding affinity for S/RBD-coated virus mimics (KD ≈7 nM) and also blocked interaction of S/RBD with ACE2 receptors (IC50 ≈5 nM). Importantly, aptamers were able to neutralize S protein-expressing viral particles and prevent host cell infection, suggesting a promising COVID-19 therapy strategy.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Aptamers, Nucleotide/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/chemistry , Aptamers, Nucleotide/chemistry , Base Sequence , COVID-19/metabolism , HEK293 Cells , Humans , Protein Interaction Domains and Motifs/drug effects , Protein Interaction Maps/drug effects , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry
13.
Mol Ther Methods Clin Dev ; 20: 350-356, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33521163

ABSTRACT

Virus neutralization assay is principally conducted by measuring the ability of the antibodies in patient sera to prevent the infection of susceptible cells by the virus. As SARS-CoV-2 is classified as a risk group 3 pathogen, neutralization assay using a live virus needs to be handled in a biosafety level 3 laboratory. To overcome this limitation, pseudotyped viruses have been developed as an alternative for the live SARS-CoV-2. However, one of the issues that we and others have encountered during the production of pseudotyped virus with SARS-CoV-2 spike protein was the low virus yield. In our own experience, we were only able initially to produce a stock with a virus titer that is more than two orders of magnitude lower than what we usually get with a vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped lentiviral vector. We have conducted a series of improvements, including using a C-terminal truncated form of spike protein and a D614G mutated spike. Together, these have led to a significant improvement in the yield of the pseudotyped virus. Finally, our data show that using a high-affinity ACE2-expressing cell line resulted in a reduction in detection sensitivity of the neutralization assay.

14.
Mol Ther Oncolytics ; 19: 33-46, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33024817

ABSTRACT

One of the major hurdles for cancer immunotherapy is the host's innate antiviral defense mechanisms. They include innate immune cells, such as natural killer (NK) cells and macrophages, which can be recruited within hours to the site of injection to clear the introduced oncolytic viruses. Here, we report a strategy to redirect these infiltrating innate immune cells to attack tumor cells instead by arming herpes simplex virus (HSV)-derived oncolytic viruses with secreted chimeric molecules that can engage these innate immune cells with tumor cells to kill the latter. These chimeric molecules have, at their N terminus, a custom-binding moiety for a tumor-associated antigen (TAA) and at their C terminus, protein L (PL) that binds to immunoglobulins (Igs). The binding of PL to Igs exposes the Fc to the Fc receptors on the surface of the innate immune cells, trigging them to attack the engaged tumor cells. In vitro and in vivo evaluation in a murine tumor model with limited permissiveness to oncolytic HSVs showed that arming the viruses with these chimeric molecules significantly boosts the killing effect and therapeutic activity. Moreover, our data also showed that the combined killing effect from the engaged innate immune cells and the oncolytic virus resulted in a more efficient stimulation of neoantigen-specific antitumor immunity than the virotherapy alone. Our data suggest that arming an oncolytic virus with this strategy represents a unique and pragmatic way of potentiating the oncolytic and immunotherapeutic effect of virotherapy.

15.
BMC Geriatr ; 19(1): 214, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31390985

ABSTRACT

BACKGROUND: Hearing loss is one of the most common modifiable factors associated with cognitive and functional decline in geriatric populations. An accurate, easy-to-apply, and inexpensive hearing screening method is needed to detect hearing loss in community-dwelling elderly people, intervene early and reduce the negative consequences and burden of untreated hearing loss on individuals, families and society. However, available hearing screening tools do not adequately meet the need for large-scale geriatric hearing detection due to several barriers, including time, personnel training and equipment costs. This study aimed to propose an efficient method that could potentially satisfy this need. METHODS: In total, 1793 participants (≥60 years) were recruited to undertake a standard audiometric air conduction pure tone test at 4 frequencies (0.5-4 kHz). Audiometric data from one community were used to train the decision tree model and generate a pure tone screening rule to classify people with or without moderate or more serious hearing impairment. Audiometric data from another community were used to validate the tree model. RESULTS: In the decision tree analysis, 2 kHz and 0.5 kHz were found to be the most important frequencies for hearing severity classification. The tree model suggested a simple two-step screening procedure in which a 42 dB HL tone at 2 kHz is presented first, followed by a 47 dB HL tone at 0.5 kHz, depending on the individual's response to the first tone. This approach achieved an accuracy of 91.20% (91.92%), a sensitivity of 95.35% (93.50%) and a specificity of 86.85% (90.56%) in the training dataset (testing dataset). CONCLUSIONS: A simple two-step screening procedure using the two tones (2 kHz and 0.5 kHz) selected by the decision tree analysis can be applied to screen moderate-to-profound hearing loss in a community-based geriatric population in Shanghai. The decision tree analysis is useful in determining the optimal hearing screening criteria for local elderly populations. Implanting the pair of tones into a well-calibrated sound generator may create a simple, practical and time-efficient screening tool with high accuracy that is readily available at healthcare centers of all levels, thereby facilitating the initiation of extensive nationwide hearing screening in older adults.


Subject(s)
Decision Trees , Geriatric Assessment/methods , Hearing Loss/diagnosis , Independent Living , Mass Screening/methods , Population Surveillance/methods , Aged , Aged, 80 and over , Audiometry, Pure-Tone/methods , Audiometry, Pure-Tone/trends , China/epidemiology , Female , Hearing Loss/epidemiology , Humans , Independent Living/trends , Male , Mass Screening/trends , Middle Aged
16.
Oncotarget ; 9(77): 34543-34553, 2018 Oct 02.
Article in English | MEDLINE | ID: mdl-30349648

ABSTRACT

Current oncolytic virotherapy is primarily administered by intratumoral injection. However, systemic delivery is desirable for treating patients, particularly for those who have developed metastatic diseases. Several components are impeding the systemic delivery efficiency of oncolytic viruses. Chief among them is the rapid clearance of viral particles by the host's mononuclear phagocyte system (MPS). We explored the possibility of genetically engrafting CD47, a "don't eat me" signal molecule, to the membrane envelop of an oncolytic herpes simplex virus (HSV) to enable it to escape from the MPS for systemic delivery. Our results show that this modification indeed allows the virus to be more efficiently delivered to local tumors by the systemic route. Moreover, this modification also prolongs the virus persistence in local tumors after it arrives there. Consequently, systemic delivery of the modified virus produced a measurable antitumor effect against a murine tumor model that is otherwise resistant to the parental virus delivered by the same route. Our data thus suggest that engrafting enveloped oncolytic viruses such as those derived from HSV with CD47 molecule represents a conceivable strategy to enhance the efficiency of systemic delivery.

17.
Oncotarget ; 9(30): 21348-21358, 2018 Apr 20.
Article in English | MEDLINE | ID: mdl-29765544

ABSTRACT

Herpes simplex virus (HSV) is one of the many viruses that have been modified or adapted for oncolytic purposes. There are two serotypes of HSV, HSV-1 and HSV-2. The majority of oncolytic HSVs, including T-VEC which has recently been approved by the US Food and Drug Administration (FDA) for clinical use in treating late stage melanoma patients, are derived from HSV-1. Recently, we and others have developed several HSV-2 based oncolytic viruses. During our in vitro characterization of oncolytic viruses developed from both serotypes (Baco-1 from HSV-1 and FusOn-H2 from HSV-2), we noticed there is a subpopulation of cancer cells in which both viruses could infect but only FusOn-H2 could spread from cell to cell on monolayers. This observation prompted us to investigate the virus receptor expression profiles in these and other tumor cells. Our data show the following: 1) This subpopulation of tumor cells only express nectin-2, not the other two major receptors (HVEM or nectin-1). 2) Baco-1 grows to a higher titer than FusOn-H2 in this subpopulation of tumor cells, but the latter kills these tumor cells more efficiently than the former. 3) FusOn-H2 is effective at treating tumors formed from these tumor cells while Baco-1 is completely ineffective. Our results suggest that this subpopulation of tumor cells may be intrinsically resistant to the therapeutic effect of a HSV-1 based oncolytic virus but they remain sensitive to a HSV-2 based virotherapy.

18.
BMC Cancer ; 15: 964, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26674012

ABSTRACT

BACKGROUND: Many commonly used xenograft tumor models do not spontaneously metastasize to distant organs following subcutaneous or orthotopic implantation, limiting their usefulness in preclinical studies. It is generally believed that natural killer cells are the key component of the innate immune system in determining tumor metastatic potential in xenograft models. However, recent studies suggest that macrophages may play an important role, as resident macrophages can eliminate the invading tumor cells if they do not express adequate levels of the CD47 molecule. METHODS: We investigated the effect of overexpressing murine CD47 (mCD47) in PC-3 cells, a commonly used human prostate cancer line, on the metastatic potential in three mouse strains with different genetic background and varying degrees of immunodeficiency. We implanted the tumor cells either subcutaneously or orthotopically and then examined their local and distant metastases. RESULTS: Our results show that mCD47-expressing PC-3 cells subcutaneously implanted in NSG and CB17. Scid mice metastasized to the sentinel lymph node, lung and liver significantly more efficiently than the control cells. When implanted orthotopically to NOD. Scid mice, these cells spontaneously metastasized to lung and liver. CONCLUSIONS: Our data demonstrate that mCD47 can facilitate human tumor cell metastasis in murine models, and that these mCD47-expressing tumor cells may be useful for in vivo studies where spontaneous metastases are desirable.


Subject(s)
CD47 Antigen/biosynthesis , Disease Models, Animal , Prostatic Neoplasms/pathology , Animals , CD47 Antigen/immunology , Cell Line, Tumor , Cell Separation , Flow Cytometry , Heterografts , Humans , Macrophages/immunology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Invasiveness/immunology , Neoplasm Transplantation , Prostatic Neoplasms/immunology , Transfection
19.
Oncotarget ; 6(2): 902-14, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25460506

ABSTRACT

Adoptive T-cell therapy has shown promises for cancer treatment. However, for treating solid tumors, there is a need for improving the ability of the adoptively transferred T cells to home to tumor sites. We explored the possibility of using an oncolytic virus derived from HSV-2, which can actively pull T effector cells to the site of infection, as a local attractant for migration of adoptively transferred T cells. Our data show that intratumoral administration of this virus can indeed attract active migration of the adoptively transferred T cells to the treated tumor. Moreover, once attracted to the tumor site by the virus, T cells persisted in there significantly longer than in mock-treated tumor. Chemokine profiling identified significant elevation of CXCL9 and CXCL10, as well as several other chemokines belonging to the inflammatory chemokine family in the virus-treated tumors. These chemokines initially guided the T-cell migration to and then maintained their persistence in the tumor site, leading to a significantly enhanced therapeutic effect. Our data suggests that this virotherapy may be combined with adoptive T-cell therapy to potentiate its therapeutic effect against solid tumors that are otherwise difficult to manage with the treatment alone.


Subject(s)
Cell Movement/immunology , Herpesvirus 2, Human/immunology , Neoplasms, Experimental/immunology , Oncolytic Viruses/immunology , T-Lymphocytes/immunology , Animals , Cell Line , Cell Line, Tumor , Chemokines/immunology , Chemokines/metabolism , Chlorocebus aethiops , Combined Modality Therapy , Herpesvirus 2, Human/physiology , Humans , Immunotherapy, Adoptive/methods , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/immunology , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Neoplasms, Experimental/therapy , Neoplasms, Experimental/virology , Oncolytic Virotherapy/methods , Oncolytic Viruses/physiology , Receptors, Chemokine/immunology , Receptors, Chemokine/metabolism , T-Lymphocytes/transplantation , Tumor Burden/immunology , Vero Cells
20.
Cell Biochem Biophys ; 69(3): 577-82, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24519667

ABSTRACT

This study examined the efficacy of gene therapy of lung adenocarcinoma using specifically controlled type I herpes simplex virus recombinant vector expressing Gibbon ape leukemia virus membrane fusion glycoprotein gene (GALV.fus). Recombinant HSV-I plasmid carrying target transgene was constructed, and recombinant viral vector was generated in Vero cells using Lipofectamine transfection. Viral vector was introduced into lung adenocarcinoma A549 cells or human fetal fibroblast HFL-I GNHu 5 cells, or inoculated into human lung adenocarcinoma xenografts in nude mice. The anti-tumor and cytotoxic effects of GALV-FMG, the transgene, were examined in these cell and animal models. Expression of GALV-FMG in xenographs achieved 100 % tumorigenicity. Recombinant HSV-I viral vector also exhibited significant tumor cell killing effect in vitro. Relative survival rates of tumor cells treated with GALV-FMG or control vectors were, respectively, 20 and 70 %. GALV.fus has a potent anti-tumor effect against lung cancer both in vitro and in vivo. This anti-tumor potential provides foundation for further studies with this vector.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/therapy , Genetic Therapy/methods , Herpesvirus 1, Human/genetics , Leukemia Virus, Gibbon Ape/genetics , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Viral Fusion Proteins/genetics , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Chlorocebus aethiops , DNA, Recombinant/genetics , Gene Expression , Genetic Therapy/adverse effects , Genetic Vectors/genetics , Humans , Lung Neoplasms/pathology , Male , Mice , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL