Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 233
Filter
1.
Mol Biol Rep ; 51(1): 116, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227121

ABSTRACT

BACKGROUND: SOX4 is a transcription factor belonging to the SOX (Sry-related High Mobility Group [HMG] box) family and plays a pivotal role in various biological processes at various stages of life. SOX4 is also expressed in the skin in adults and has been reported to be involved in wound healing, tumor formation, and metastasis. METHODS AND RESULTS: In this study, we investigated the role of SOX4 in keratinocyte phenotypic changes. We generated a SOX4-overexpressing keratinocyte cell line that expresses SOX4 in a doxycycline (DOX)-inducible manner. DOX treatment induced a change from a paving stone-like morphology to a spindle-like morphology under microscopic observation. Comprehensive gene analysis by RNA sequencing revealed increased expression of genes related to anatomical morphogenesis and cell differentiation as well as decreased expression of genes related to epithelial formation and keratinization, suggesting that SOX4 induced EMT-like phenotype in keratinocytes. Differentially expressed genes (DEGs) obtained by RNA-seq were confirmed using qRT-PCR. DOX-treated TY-1 SOX4 showed a decrease in the epithelial markers (KRT15, KRT13, KRT5, and CLDN1) and an increase in the mesenchymal marker FN1. Protein expression changes by Western blotting also showed a decrease in the epithelial marker proteins keratin 15, keratin 13, and claudin 1, and an increase in the mesenchymal marker fibronectin. Removal of DOX from DOX-treated cells also restored the epithelial and mesenchymal markers altered by SOX4. CONCLUSION: Our results indicate that SOX4 reversibly induces an EMT-like phenotype in human keratinocytes via suppression of epithelial marker genes.


Subject(s)
Keratinocytes , SOXC Transcription Factors , Skin , Humans , Blotting, Western , Doxycycline , Gene Expression , Phenotype , SOXC Transcription Factors/genetics
2.
Exp Anim ; 73(1): 11-19, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-37460310

ABSTRACT

The interconnection of heart performance and kidney function plays an important role for maintaining homeostasis through a variety of physiological crosstalk between these organs. It has been suggested that acute or chronic dysfunction in one organ causes dysregulation in another one, like patients with cardiorenal syndrome. Despite its growing recognition as global health issues, still little is known on pathophysiological evaluation between the two organs. Previously, we established a preclinical murine model with cardiac hypertrophy and fibrosis, and impaired kidney function with renal enlargement and increased urinary albumin levels induced by co-treatment with vasopressor angiotensin II (A), unilateral nephrectomy (N), and salt loading (S) (defined as ANS treatment) for 4 weeks. However, how both tissues, heart and kidney, are initially affected by ANS treatment during the progression of tissue damages remains to be determined. Here, at one week after ANS treatment, we found that cardiac function in ANS-treated mice (ANS mice) are sustained despite hypertrophy. On the other hand, kidney dysfunction is evident in ANS mice, associated with high blood pressure, enlarged glomeruli, increased levels of urinary albumin and urinary neutrophil gelatinase-associated lipocalin, and reduced creatinine clearance. Our results suggest that cardiorenal tissues become damaged at one week after ANS treatment and that ANS mice are useful as a model causing transition from early to late-stage damages of cardiorenal tissues.


Subject(s)
Angiotensin II , Cardio-Renal Syndrome , Humans , Mice , Animals , Sodium Chloride, Dietary/adverse effects , Nephrectomy/adverse effects , Kidney , Cardio-Renal Syndrome/drug therapy , Albumins
3.
Nat Commun ; 14(1): 7200, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938555

ABSTRACT

Immunological memory is a hallmark of the adaptive immune system. Although natural killer (NK) cells are innate immune cells important for the immediate host defence, they can differentiate into memory NK cells. The molecular mechanisms controlling this differentiation are yet to be fully elucidated. Here we identify the scaffold protein Themis2 as a critical regulator of memory NK cell differentiation and function. Themis2-deficient NK cells expressing Ly49H, an activating NK receptor for the mouse cytomegalovirus (MCMV) antigen m157, show enhanced differentiation into memory NK cells and augment host protection against MCMV infection. Themis2 inhibits the effector function of NK cells after stimulation of Ly49H and multiple activating NK receptors, though not specific to memory NK cells. Mechanistically, Themis2 suppresses Ly49H signalling by attenuating ZAP70/Syk phosphorylation, and it also translocates to the nucleus, where it promotes Zfp740-mediated repression to regulate the persistence of memory NK cells. Zfp740 deficiency increases the number of memory NK cells and enhances the effector function of memory NK cells, which further supports the relevance of the Themis2-Zfp740 pathway. In conclusion, our study shows that Themis2 quantitatively and qualitatively regulates NK cell memory formation.


Subject(s)
Antigens, Viral , Muromegalovirus , Animals , Mice , Cell Differentiation , Cytomegalovirus , Killer Cells, Natural , Phosphorylation
4.
J Biol Chem ; 299(9): 105131, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37543365

ABSTRACT

Histone posttranslational modifications play critical roles in a variety of eukaryotic cellular processes. In particular, methylation at lysine and arginine residues is an epigenetic mark that determines the chromatin state. In addition, histone "histidine" methylation was initially reported over 50 years ago; however, further studies in this area were not conducted, leaving a gap in our understanding. Here, we aimed to investigate the occurrence of histidine methylation in histone proteins using highly sensitive mass spectrometry. We found that acid hydrolysates of whole histone fraction from calf thymus contained Nτ-methylhistidine, but not Nπ-methylhistidine. Both core and linker histones carried a Nτ-methylhistidine modification, and methylation levels were relatively high in histone H3. Furthermore, through MALDI-TOF MS, we identified two histidine methylation sites at His-82 in the structured globular domain of histone H2A and His-39 in the N-terminal tail of histones H3. Importantly, these histidine methylation signals were also detected in histones purified from a human cell line HEK293T. Moreover, we revealed the overall methylation status of histone H3, suggesting that methylation is enriched primarily at lysine residues and to a lesser extent at arginine and histidine residues. Thus, our findings established histidine Nτ-methylation as a new histone modification, which may serve as a chemical flag that mediates the epigenetic mark of adjacent residues of the N-terminal tail and the conformational properties of the globular domain.

5.
J Biochem ; 174(3): 279-289, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37279646

ABSTRACT

Protein methylation is mainly observed in lysine, arginine and histidine residues. Histidine methylation occurs at one of two different nitrogen atoms of the imidazole ring, producing Nτ-methylhistidine and Nπ-methylhistidine, and it has recently attracted attention with the identification of SETD3, METTL18 and METTL9 as catalytic enzymes in mammals. Although accumulating evidence had suggested the presence of more than 100 proteins containing methylated histidine residues in cells, much less information has been known regarding histidine-methylated proteins than lysine- and arginine-methylated ones, because no method has been developed to identify substrates for histidine methylation. Here, we established a method to screen novel target proteins for histidine methylation, using biochemical protein fractionation combined with the quantification of methylhistidine by LC-MS/MS. Interestingly, the differential distribution pattern of Nτ-methylated proteins was found between the brain and skeletal muscle, and identified γ-enolase where the His-190 at the Nτ position is methylated in mouse brain. Finally, in silico structural prediction and biochemical analysis showed that the His-190 in γ-enolase is involved in the intermolecular homodimeric formation and enzymatic activity. In the present study, we provide a new methodology to find histidine-methylated proteins in vivo and suggest an insight into the importance of histidine methylation.


Subject(s)
Histidine , Methylhistidines , Mice , Animals , Methylhistidines/analysis , Histidine/metabolism , Lysine/metabolism , Isoenzymes , Chromatography, Liquid , Tandem Mass Spectrometry , Proteins , Phosphopyruvate Hydratase , Arginine , Mammals
6.
Biochem Biophys Res Commun ; 647: 72-79, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36731336

ABSTRACT

Apelin (APL), an endogenous ligand for APJ, has been reported to be upregulated in a murine model of acute colitis induced by sodium dextran sulfate, as well as inflammatory bowel diseases (IBD) in humans. However, the mechanisms and functions of APL/APJ axis in the pathogenesis of IBD are unclear. We herein analyzed CD4+ T cells to determine the functions of APL in a murine model of chronic colitis induced in Rag deficient mice (Rag-/-). In colonic tissues of wild-type mice (WT), we found that APL was expressed especially in the lamina propria lymphocytes, where CD4+ T cells are dominant, rather than the epithelial cells. Unexpectedly, the APL expression was rather downregulated in the colonic tissue of the chronic colitis group compared to the control groups (Rag-/- before colitis induction and WT). The APL expression was downregulated when naïve T cells were differentiated into effecter T cells. A lack of APL resulted in decreased naïve T cells and increased effecter T cells in secondary lymphoid organs. A synthetic APL peptide, [Pyr1]-APL-13, increased IL-10 and decreased IFN-γ productions by effecter T cells. Administration of [Pyr1]-APL-13 improved survival rate in association with lessened colitis severity and decreased pro-inflammatory cytokine production. This is the first report showing immunological function of APL specifically on T cells, and these results indicate that APL/APJ axis may be a novel therapeutic target for IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mice , Humans , Animals , T-Lymphocytes/metabolism , Apelin/metabolism , Disease Models, Animal , Colitis/pathology , Inflammatory Bowel Diseases/metabolism , Dextran Sulfate , Mice, Inbred C57BL , CD4-Positive T-Lymphocytes
7.
J Biol Chem ; 299(3): 102964, 2023 03.
Article in English | MEDLINE | ID: mdl-36736425

ABSTRACT

Cardiac hypertrophy is a crucial risk factor for hypertensive disorders during pregnancy, but its progression during pregnancy remains unclear. We previously showed cardiac hypertrophy in a pregnancy-associated hypertensive (PAH) mouse model, in which an increase in angiotensin II (Ang II) levels was induced by human renin and human angiotensinogen, depending on pregnancy conditions. Here, to elucidate the factors involved in the progression of cardiac hypertrophy, we performed a comprehensive analysis of changes in gene expression in the hearts of PAH mice and compared them with those in control mice. We found that alpha-1A adrenergic receptor (Adra1a) mRNA levels in the heart were significantly reduced under PAH conditions, whereas the renin-angiotensin system was upregulated. Furthermore, we found that Adra1a-deficient PAH mice exhibited more severe cardiac hypertrophy than PAH mice. Our study suggests that Adra1a levels are regulated by renin-angiotensin system and that changes in Adra1a expression are involved in progressive cardiac hypertrophy in PAH mice.


Subject(s)
Angiotensin II , Hypertension, Pregnancy-Induced , Receptors, Adrenergic, alpha-1 , Animals , Female , Humans , Mice , Pregnancy , Angiotensin II/metabolism , Cardiomegaly/metabolism , Myocardium/metabolism , Receptors, Adrenergic, alpha-1/genetics , Receptors, Adrenergic, alpha-1/metabolism , Renin-Angiotensin System , Hypertension, Pregnancy-Induced/genetics , Hypertension, Pregnancy-Induced/metabolism
8.
Front Neurosci ; 16: 948517, 2022.
Article in English | MEDLINE | ID: mdl-36440275

ABSTRACT

Protein arginine methyltransferase 1 (PRMT1), a major type I arginine methyltransferase in mammals, methylates histone and non-histone proteins to regulate various cellular functions, such as transcription, DNA damage response, and signal transduction. PRMT1 is highly expressed in neural stem cells (NSCs) and embryonic brains, suggesting that PRMT1 is essential for early brain development. Although our previous reports have shown that PRMT1 positively regulates oligodendrocyte development, it has not been studied whether PRMT1 regulates NSC proliferation and its survival during development. To examine the role of PRMT1 in NSC activity, we cultured NSCs prepared from embryonic mouse forebrains deficient in PRMT1 specific for NSCs and performed neurosphere assays. We found that the primary neurospheres of PRMT1-deficient NSCs were small and the number of spheres was decreased, compared to those of control NSCs. Primary neurospheres deficient in PRMT1 expressed an increased level of cleaved caspase-3, suggesting that PRMT1 deficiency-induced apoptosis. Furthermore, p53 protein was significantly accumulated in PRMT1-deficient NSCs. In parallel, p53-responsive pro-apoptotic genes including Pmaip1 and Perp were upregulated in PRMT1-deficient NSCs. p53-target p21 mRNA and its protein levels were shown to be upregulated in PRMT1-deficient NSCs. Moreover, the 5-bromo-2'-deoxyuridine (BrdU) incorporation assay showed that the loss of PRMT1 led to cell cycle defects in the embryonic NSCs. In contrast to the above in vitro observations, NSCs normally proliferated and survived in the fetal brains of NSC-specific PRMT1-deficient mice. We also found that Lama1, which encodes the laminin subunit α1, was significantly upregulated in the embryonic brains of PRMT1-deficient mice. These data implicate that extracellular factors provided by neighboring cells in the microenvironment gave a trophic support to NSCs in the PRMT1-deficient brain and recovered NSC activity to maintain brain homeostasis. Our study implies that PRMT1 plays a cell-autonomous role in the survival and proliferation of embryonic NSCs.

9.
Hypertension ; 79(7): 1409-1422, 2022 07.
Article in English | MEDLINE | ID: mdl-35534926

ABSTRACT

BACKGROUND: ANP (atrial natriuretic peptide), acting through NPR1 (natriuretic peptide receptor 1), provokes hypotension. Such hypotension is thought to be due to ANP inducing vasodilation via NPR1 in the vasculature; however, the underlying mechanism remains unclear. Here, we investigated the mechanisms of acute and chronic blood pressure regulation by ANP. METHODS AND RESULTS: Immunohistochemical analysis of rat tissues revealed that NPR1 was abundantly expressed in endothelial cells and smooth muscle cells of small arteries and arterioles. Intravenous infusion of ANP significantly lowered systolic blood pressure in wild-type mice. ANP also significantly lowered systolic blood pressure in smooth muscle cell-specific Npr1-knockout mice but not in endothelial cell-specific Npr1-knockout mice. Moreover, ANP significantly lowered systolic blood pressure in Nos3-knockout mice. In human umbilical vein endothelial cells, treatment with ANP did not influence nitric oxide production or intracellular Ca2+ concentration, but it did hyperpolarize the cells. ANP-induced hyperpolarization of human umbilical vein endothelial cells was inhibited by several potassium channel blockers and was also abolished under knockdown of RGS2 (regulator of G-protein signaling 2), an GTPase activating protein in G-protein α-subunit. ANP increased Rgs2 mRNA expression in human umbilical vein endothelial cells but failed to lower systolic blood pressure in Rgs2-knockout mice. Endothelial cell-specific Npr1-overexpressing mice exhibited lower blood pressure than did wild-type mice independent of RGS2, and showed dilation of arterial vessels on synchrotron radiation microangiography. CONCLUSIONS: Together, these results indicate that vascular endothelial NPR1 plays a crucial role in ANP-mediated blood pressure regulation, presumably by a mechanism that is RGS2-dependent in the acute phase and RGS2-independent in the chronic phase.


Subject(s)
Atrial Natriuretic Factor , Blood Pressure , Receptors, Atrial Natriuretic Factor , Animals , Atrial Natriuretic Factor/pharmacology , Blood Pressure/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , GTP-Binding Proteins/metabolism , Mice , Mice, Knockout , Rats , Receptors, Atrial Natriuretic Factor/metabolism
10.
Neurosci Lett ; 770: 136384, 2022 01 23.
Article in English | MEDLINE | ID: mdl-34890717

ABSTRACT

Ultraviolet light is quite toxic to all the animals and evoke the avoidance behavior of UV. The soil nematode Caenorhabditis elegans senses UV and is known to avoid UV by using four sensory neurons. However, it is not clear what signaling molecules act for UV avoidance in the neuronal pathway constituted of four sensory neurons. In addition, it is not clear whether this harmful environmental signal can be associated with other benefit signals such as food. In this study, by using newly developed assay system, we found that C. elegans can associate UV and food and changes behavioral strategy against harmful UV signal. This is the first indication that C. elegans shows associate learning with UV and food. Using our assay system, we also found that glutamate is used as a transmitter in both the UV avoidance and UV associate learning neural circuits. However, one sensory neuron showed a significant role for associative learning, compared to a complimentary role in four sensory neurons for direct associative learning, and different sets of glutamate receptors seemed to be acting for UV avoidance and UV associate learning. These findings suggest that a distinct neuronal network is used for UV learning compared to that for direct avoidance behavior of UV.


Subject(s)
Learning , Neuronal Plasticity , Phototaxis , Sensory Receptor Cells/metabolism , Ultraviolet Rays , Animals , Caenorhabditis elegans , Feeding Behavior , Glutamic Acid/metabolism , Receptors, Glutamate/metabolism , Sensory Receptor Cells/physiology
11.
Commun Biol ; 4(1): 1410, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34921234

ABSTRACT

The mouse Igf2/H19 locus is regulated by genomic imprinting, in which the paternally methylated H19 imprinting control region (ICR) plays a critical role in mono-allelic expression of the genes in the locus. Although the maternal allele-specific insulator activity of the H19 ICR in regulating imprinted Igf2 expression has been well established, the detailed mechanism by which the H19 ICR controls mono-allelic H19 gene expression has not been fully elucidated. In this study, we evaluated the effect of H19 ICR orientation on imprinting regulation in mutant mice in which the H19 ICR sequence was inverted at the endogenous locus. When the inverted-ICR allele was paternally inherited, the methylation level of the H19 promoter was decreased and the H19 gene was derepressed, suggesting that methylation of the H19 promoter is essential for complete repression of H19 gene expression. Unexpectedly, when the inverted allele was maternally inherited, the expression level of the H19 gene was lower than that of the WT allele, even though the H19 promoter remained fully hypomethylated. These observations suggested that the polarity of the H19 ICR is involved in controlling imprinted H19 gene expression on each parental allele, dependent or independent on DNA methylation of the H19 promoter.


Subject(s)
Gene Expression , Promoter Regions, Genetic , Animals , Methylation , Mice
12.
J Biol Chem ; 297(5): 101230, 2021 11.
Article in English | MEDLINE | ID: mdl-34562450

ABSTRACT

Protein methylation is one of the most common post-translational modifications observed in basic amino acid residues, including lysine, arginine, and histidine. Histidine methylation occurs on the distal or proximal nitrogen atom of its imidazole ring, producing two isomers: Nτ-methylhistidine or Nπ-methylhistidine. However, the biological significance of protein histidine methylation remains largely unclear owing in part to the very limited knowledge about its contributing enzymes. Here, we identified mammalian seven-ß-strand methyltransferase METTL9 as a histidine Nπ-methyltransferase by siRNA screening coupled with methylhistidine analysis using LC-tandem MS. We demonstrated that METTL9 catalyzes Nπ-methylhistidine formation in the proinflammatory protein S100A9, but not that of myosin light chain kinase MYLK2, in vivo and in vitro. METTL9 does not affect the heterodimer formation of S100A9 and S100A8, although Nπ-methylation of S100A9 at His-107 overlaps with a zinc-binding site, attenuating its affinity for zinc. Given that S100A9 exerts an antimicrobial activity, probably by chelation of zinc essential for the growth of bacteria and fungi, METTL9-mediated S100A9 methylation might be involved in the innate immune response to bacterial and fungal infection. Thus, our findings suggest a functional consequence for protein histidine Nπ-methylation and may add a new layer of complexity to the regulatory mechanisms of post-translational methylation.


Subject(s)
Calgranulin B , Methyltransferases , Protein Processing, Post-Translational , RNA, Small Interfering , Animals , Calgranulin B/genetics , Calgranulin B/metabolism , HEK293 Cells , HeLa Cells , Humans , Inflammation/genetics , Inflammation/metabolism , Methylation , Methylhistidines/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
13.
Sci Rep ; 11(1): 14537, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34267234

ABSTRACT

Activin, a member of the transforming growth factor-ß (TGF-ß) superfamily of proteins, induces various tissues from the amphibian presumptive ectoderm, called animal cap explants (ACs) in vitro. However, it remains unclear how and to what extent the resulting cells recapitulate in vivo development. To comprehensively understand whether the molecular dynamics during activin-induced ACs differentiation reflect the normal development, we performed time-course transcriptome profiling of Xenopus ACs treated with 50 ng/mL of activin A, which predominantly induced dorsal mesoderm. The number of differentially expressed genes (DEGs) in response to activin A increased over time, and totally 9857 upregulated and 6663 downregulated DEGs were detected. 1861 common upregulated DEGs among all Post_activin samples included several Spemann's organizer genes. In addition, the temporal transcriptomes were clearly classified into four distinct groups in correspondence with specific features, reflecting stepwise differentiation into mesoderm derivatives, and a decline in the regulation of nuclear envelop and golgi. From the set of early responsive genes, we also identified the suppressor of cytokine signaling 3 (socs3) as a novel activin A-inducible gene. Our transcriptome data provide a framework to elucidate the transcriptional dynamics of activin-driven AC differentiation, reflecting the molecular characteristics of early normal embryogenesis.


Subject(s)
Activins/pharmacology , Ectoderm/drug effects , Gene Expression Regulation, Developmental/drug effects , Xenopus Proteins/genetics , Xenopus laevis/embryology , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Ectoderm/cytology , Ectoderm/physiology , Embryo, Nonmammalian , Gene Expression Profiling , Reproducibility of Results , Suppressor of Cytokine Signaling 3 Protein/genetics , Xenopus laevis/genetics
14.
EMBO J ; 40(14): e106434, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34152017

ABSTRACT

Alternative splicing of pre-mRNAs can regulate gene expression levels by coupling with nonsense-mediated mRNA decay (NMD). In order to elucidate a repertoire of mRNAs regulated by alternative splicing coupled with NMD (AS-NMD) in an organism, we performed long-read RNA sequencing of poly(A)+ RNAs from an NMD-deficient mutant strain of Caenorhabditis elegans, and obtained full-length sequences for mRNA isoforms from 259 high-confidence AS-NMD genes. Among them are the S-adenosyl-L-methionine (SAM) synthetase (sams) genes sams-3 and sams-4. SAM synthetase activity autoregulates sams gene expression through AS-NMD in a negative feedback loop. We furthermore find that METT-10, the orthologue of human U6 snRNA methyltransferase METTL16, is required for the splicing regulation in␣vivo, and specifically methylates the invariant AG dinucleotide at the distal 3' splice site (3'SS) in␣vitro. Direct RNA sequencing coupled with machine learning confirms m6 A modification of endogenous sams mRNAs. Overall, these results indicate that homeostasis of SAM synthetase in C. elegans is maintained by alternative splicing regulation through m6 A modification at the 3'SS of the sams genes.


Subject(s)
Alternative Splicing/genetics , Homeostasis/genetics , Ligases/genetics , Methionine Adenosyltransferase/genetics , Nonsense Mediated mRNA Decay/genetics , RNA, Messenger/genetics , S-Adenosylmethionine/metabolism , Animals , Caenorhabditis elegans/genetics , Methyltransferases/genetics , RNA Precursors/genetics
15.
Elife ; 102021 05 05.
Article in English | MEDLINE | ID: mdl-33949947

ABSTRACT

In vivo function of CDK5 and Abl enzyme substrate 2 (Cables2), belonging to the Cables protein family, is unknown. Here, we found that targeted disruption of the entire Cables2 locus (Cables2d) caused growth retardation and enhanced apoptosis at the gastrulation stage and then induced embryonic lethality in mice. Comparative transcriptome analysis revealed disruption of Cables2, 50% down-regulation of Rps21 abutting on the Cables2 locus, and up-regulation of p53-target genes in Cables2d gastrulas. We further revealed the lethality phenotype in Rps21-deleted mice and unexpectedly, the exon 1-deleted Cables2 mice survived. Interestingly, chimeric mice derived from Cables2d ESCs carrying exogenous Cables2 and tetraploid wild-type embryo overcame gastrulation. These results suggest that the diminished expression of Rps21 and the completed lack of Cables2 expression are intricately involved in the embryonic lethality via the p53 pathway. This study sheds light on the importance of Cables2 locus in mouse embryonic development.


Subject(s)
Cell Cycle Proteins/genetics , Gastrulation/genetics , Gene Expression , Ribosomal Proteins/genetics , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Animals , Female , Male , Mice , Mice, Inbred ICR , Phenotype , Transcriptional Activation , Tumor Suppressor Protein p53/genetics , Up-Regulation
16.
J Neurochem ; 156(6): 834-847, 2021 03.
Article in English | MEDLINE | ID: mdl-33460120

ABSTRACT

PRMT1, a major arginine methyltransferase, plays critical roles in transcription, DNA damage response, and cell proliferation. Although we have previously discovered the crucial roles of PRMT1 for oligodendrocyte lineage progression in the central nervous system of neural stem cell-specific PRMT1 conditional knockout (PRMT1-CKO) mice, the context of other glial cell states that may cause the hypomyelination phenotype in PRMT1-CKO mice has not been explored so far. Here, we performed RNA-seq of the neonatal cortices of PRMT1-CKO mice to reveal overall gene expression changes and show the up-regulation of inflammatory signaling which is generally mediated by astrocytes and microglia in advance of the myelination defects. In particular, qRT-PCR analyses revealed Interleukin-6 (Il-6), a major central nervous system cytokine, was dramatically increased in the PRMT1-CKO brains. The gene expression changes led to augmentation of glial fibrillary acidic protein and Vimentin protein levels in PRMT1-CKO mice, showing severe reactive astrogliosis after birth. We further show that IBA1-positive and CD68-positive activated microglia were increased in PRMT1-CKO mice, in spite of intact Prmt1 gene expression in purified microglia from the mutant mice. Our results indicate that PRMT1 loss in the neural stem cell lineage causes disruptive changes in all glial types perturbing postnatal brain development and myelination.


Subject(s)
Astrocytes , Brain/growth & development , Central Nervous System/metabolism , Microglia , Protein-Arginine N-Methyltransferases/genetics , Animals , Animals, Newborn , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Encephalitis/physiopathology , Female , Interleukin-6/metabolism , Mice , Mice, Knockout , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Mutation , Myelin Sheath , Neural Stem Cells/metabolism , Pregnancy , RNA, Small Interfering/pharmacology , Signal Transduction
17.
Nat Aging ; 1(3): 284-294, 2021 03.
Article in English | MEDLINE | ID: mdl-37118408

ABSTRACT

Age-related regeneration failure in the central nervous system can occur as a result of a decline in remyelination efficacy. The responsiveness of myelin-forming cells to signals for remyelination is affected by aging-related epigenetic modification; however, the molecular mechanism is not fully clarified. In the present study, we report that the apelin receptor (APJ) mediates remyelination efficiency with age. APJ expression in myelin-forming cells is correlated with age-associated changes in remyelination efficiency, and the activation of APJ promotes remyelination through the translocation of myelin regulatory factor. APJ signaling activation promoted remyelination in both aged mice with toxin-induced demyelination and mice with experimental autoimmune encephalomyelitis. In human cells, APJ activation enhanced the expression of remyelination markers. Impaired oligodendrocyte function in aged animals can be reversibly reactivated; thus, the results demonstrate that dysfunction of the apelin-APJ system mediates remyelination failure in aged animals, and that their myelinating function can be reactivated by APJ activation.


Subject(s)
Remyelination , Mice , Humans , Animals , Aged , Apelin/genetics , Remyelination/physiology , Signal Transduction , Myelin Sheath/metabolism , Apelin Receptors/genetics
18.
Biochim Biophys Acta Gen Subj ; 1865(1): 129776, 2021 01.
Article in English | MEDLINE | ID: mdl-33127433

ABSTRACT

BACKGROUND: Protein arginine methyltransferase 1 (PRMT1), a major type I arginine methyltransferase in mammals, methylates histone and non-histone proteins to regulate various cellular functions such as transcription, DNA damage response, and signal transduction. SCOPE OF REVIEW: This review summarizes previous and recent studies on PRMT1 functions in major cell types of the central nervous system. We also discuss the potential involvement of PRMT1 in neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. Also, we raise key questions that must be addressed in the future to more precisely understand the roles of PRMT1. MAJOR CONCLUSIONS: Recent studies revealed that PRMT1 is essential for the development of neurons, astrocytes, and oligodendrocytes, although further investigation using cell type-specific PRMT1-deficient animals is required. In addition, the relevance of PRMT1 in neurodegenerative diseases will continue to be a hot topic. GENERAL SIGNIFICANCE: PRMT1 is important for neural development and neurodegenerative diseases.


Subject(s)
Arginine/metabolism , Brain/growth & development , Neurodegenerative Diseases/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , Animals , Arginine/analogs & derivatives , Arginine/genetics , Brain/metabolism , Brain/pathology , Gene Expression Regulation, Developmental , Humans , Methylation , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Protein-Arginine N-Methyltransferases/genetics , Repressor Proteins/genetics
19.
Int J Mol Sci ; 21(18)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32937976

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease that is caused by the dysregulation of alveolar epithelial type II cells (AEC II). The mechanisms involved in the progression of IPF remain incompletely understood, although the immune response accompanied by p38 mitogen-activated protein kinase (MAPK) activation may contribute to some of them. This study aimed to examine the association of p38 activity in the lungs with bleomycin (BLM)-induced pulmonary fibrosis and its transcriptomic profiling. Accordingly, we evaluated BLM-induced pulmonary fibrosis during an active fibrosis phase in three genotypes of mice carrying stepwise variations in intrinsic p38 activity in the AEC II and performed RNA sequencing of their lungs. Stepwise elevation of p38 signaling in the lungs of the three genotypes was correlated with increased severity of BLM-induced pulmonary fibrosis exhibiting reduced static compliance and higher collagen content. Transcriptome analysis of these lung samples also showed that the enhanced p38 signaling in the lungs was associated with increased transcription of the genes driving the p38 MAPK pathway and differentially expressed genes elicited by BLM, including those related to fibrosis as well as the immune system. Our findings underscore the significance of p38 MAPK in the progression of pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis/genetics , Lung/metabolism , Transcriptome/genetics , p38 Mitogen-Activated Protein Kinases/genetics , Alveolar Epithelial Cells/metabolism , Animals , Bleomycin/pharmacology , Collagen/metabolism , Female , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
20.
Mol Med Rep ; 22(2): 1518-1526, 2020 08.
Article in English | MEDLINE | ID: mdl-32626975

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease of unknown etiology. Under pathological conditions in lungs with IPF, myofibroblasts serve a key role in fibrogenesis via the accumulation of an excessive amount of extracellular matrix. To develop effective therapeutic interventions against IPF, studies have recently focused on how to dedifferentiate established myofibroblasts. The present study revealed that JQ1, an inhibitor of bromodomain and extra­terminal proteins, markedly suppressed the expression levels of α­smooth muscle actin and ED­A­fibronectin in myofibroblasts prepared from the lung of a patient with end­stage IPF. Furthermore, these findings were supported by transcriptome analysis using RNA sequencing, in which differentially expressed genes (DEGs) downregulated by JQ1 treatment were significantly enriched in the fibrosis­related signaling pathway. On the other hand, the upregulated DEGs in response to JQ1 treatment were significantly enriched in glutathione metabolism, which may affect the cell status of fibroblast/myofibroblast. To the best of our knowledge, this was the first study to comprehensively analyze transcriptome profiles associated with dedifferentiation of IPF myofibroblasts.


Subject(s)
Azepines/pharmacology , Cell Differentiation/drug effects , Idiopathic Pulmonary Fibrosis/metabolism , Myofibroblasts , Transcriptome , Triazoles/pharmacology , Actins/metabolism , Cells, Cultured , Fibronectins/metabolism , Gene Expression/drug effects , Humans , Lung/metabolism , Lung/pathology , Male , Middle Aged , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myofibroblasts/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...