Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 226
1.
Article En | MEDLINE | ID: mdl-38562118

BACKGROUND: Previous research has shown a significant link between gut microbiota in children with autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). However, much remains unknown because of the heterogeneity of disorders and the potential confounders such as dietary patterns and control group variations. METHODS: Children aged 6-12 years who had been clinically diagnosed with ASD and/or ADHD, their unaffected neurotypical siblings, and non-related neurotypical volunteers were recruited cross-sectionally. The ASD diagnosis was confirmed using the Autism Diagnostic Observation Schedule-2 (ADOS-2) in all patients, including those with ADHD. Standardized DNA extraction and sequencing methods were used to compare gut microbial alpha-diversity among the groups. Dietary diversity was calculated from a standardized dietary questionnaire form. We compared the difference in gut microbiome between patients with ASD and/or ADHD with neurotypical siblings and non-related neurotypical controls. RESULTS: Ninety-eight subjects were included in the study (18 with ASD, 19 with ADHD, 20 with both ASD and ADHD, 13 neurotypical siblings, and 28 non-related neurotypical controls). The alpha-diversity indices, such as Chao 1 and Shannon index, showed a significant difference between the groups in a Linear mixed-effect model (F(4, 93) = 4.539, p = .02), (F(4, 93) = 3.185, p = .017), respectively. In a post-hoc pairwise comparison, patients with ASD had lower alpha-diversity compared with non-related controls after Bonferroni correction. Dietary diversity shown in Shannon index did not differ among the groups (F(4, 84) = 1.494, p = .211). CONCLUSIONS: Our study indicates disorder-specific microbiome differences in patients with ASD. In future research on gut microbiota in neurodevelopmental disorders, it is necessary to consider the impact of ASD and ADHD co-occurrence, and strictly control for background information such as diet, to elucidate the gut-microbiota interaction in ASD and ADHD for exploring the potential of therapeutic interventions.

2.
iScience ; 27(4): 109445, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38550994

Ecosystem conservation requires a deeper understanding of species-habitat relationships and population dynamics at a fine spatiotemporal resolution. We propose a new distribution modeling method based on a 5-year monthly survey that considers the temporal continuity of species distributions and physical habitat datasets by inputting continuous time-related variables. We employed random forests to relate the presence/absence of the non-native freshwater fish Candidia temminckii to physical habitat data at 15 sampling sites along a 1.4 km spring-fed river in Japan. The proposed method outperforms all conventional methods using datasets split into a specific time period to incorporate temporality into the model. The order of variable importance and shape of the partial dependence plots of the proposed method reflect species ecology and show a gradual shift over time compared to the conventional methods. These results demonstrate the applicability of the proposed method to species distribution modeling using fine-scale spatiotemporal data.

3.
NPJ Sci Food ; 8(1): 18, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38485724

Current treatment options for COVID-19 are limited, with many antivirals and immunomodulators restricted to the most severe cases and preventative care limited to vaccination. As the SARS-CoV-2 virus and its increasing variants threaten to become a permanent fixture of our lives, this new reality necessitates the development of cost-effective and accessible treatment options for COVID-19. Studies have shown that there are correlations between the gut microbiome and severity of COVID-19, especially with regards to production of physiologically beneficial short-chain fatty acids (SCFAs) by gut microbes. In this study, we used a Syrian hamster model to study how dietary consumption of the prebiotic inulin affected morbidity and mortality resulting from SARS-CoV-2 infection. After two weeks of observation, we discovered that inulin supplementation attenuated morbid weight loss and increased survival rate in hamster subjects. An analysis of microbiome community structure showed significant alterations in 15 genera. Notably, there were also small increases in fecal DCA and a significant increase in serum DCA, perhaps highlighting a role for this secondary bile acid in conferring protection against SARS-CoV-2. In light of these results, inulin and other prebiotics are promising targets for future investigation as preventative treatment options for COVID-19.

4.
Cell Rep ; 43(4): 113981, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38520688

Cholera toxin (CT), a bacterial exotoxin composed of one A subunit (CTA) and five B subunits (CTB), functions as an immune adjuvant. CTB can induce production of interleukin-1ß (IL-1ß), a proinflammatory cytokine, in synergy with a lipopolysaccharide (LPS), from resident peritoneal macrophages (RPMs) through the pyrin and NLRP3 inflammasomes. However, how CTB or CT activates these inflammasomes in the macrophages has been unclear. Here, we clarify the roles of inositol-requiring enzyme 1 alpha (IRE1α), an endoplasmic reticulum (ER) stress sensor, in CT-induced IL-1ß production in RPMs. In RPMs, CTB is incorporated into the ER and induces ER stress responses, depending on GM1, a cell membrane ganglioside. IRE1α-deficient RPMs show a significant impairment of CT- or CTB-induced IL-1ß production, indicating that IRE1α is required for CT- or CTB-induced IL-1ß production in RPMs. This study demonstrates the critical roles of IRE1α in activation of both NLRP3 and pyrin inflammasomes in tissue-resident macrophages.


Cholera Toxin , Endoplasmic Reticulum Stress , Endoribonucleases , Interleukin-1beta , Protein Serine-Threonine Kinases , Interleukin-1beta/metabolism , Animals , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Endoplasmic Reticulum Stress/drug effects , Mice , Cholera Toxin/pharmacology , Cholera Toxin/metabolism , Inflammasomes/metabolism , Mice, Inbred C57BL , Macrophages/metabolism , Macrophages/drug effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Lipopolysaccharides/pharmacology , Endoplasmic Reticulum/metabolism
5.
Int Immunol ; 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38442194

The intestinal barrier consists of mucosal, epithelial, and immunological barriers and serves as a dynamic interface between the host and its environment. Disruption of the intestinal barrier integrity is a leading cause of various gastrointestinal diseases, such as inflammatory bowel disease. The homeostasis of the intestinal barrier is tightly regulated by crosstalk between gut microbes and the immune system; however, the implication of the immune system on the imbalance of gut microbes that disrupts barrier integrity remains to be fully elucidated. An inhibitory immunoglobulin-like receptor, Allergin-1, is expressed on mast cells and dendritic cells and inhibits Toll-like receptor (TLR)-2 and TLR-4 signaling in these cells. Since TLRs are major sensors of microbiota and are involved in local epithelial homeostasis, we investigated the role of Allergin-1 in maintaining intestinal homeostasis. Allergin-1-deficient (Milr1-/-) mice exhibited more severe dextran sulfate sodium (DSS)-induced colitis than did wild-type (WT) mice. Milr1-/- mice showed an enhanced intestinal permeability than did WT mice even before DSS administration. Treatment of Milr1-/- mice with neomycin, but not ampicillin, restored intestinal barrier integrity. The 16S rRNA gene sequencing analysis demonstrated that Bifidobacterium pseudolongum was the dominant bacteria in Milr1-/- mice after treatment with ampicillin. Although the transfer of B. pseudolongum to germ-free WT mice had no effect on intestinal permeability, its transfer into ampicillin-treated WT mice enhanced intestinal permeability. These results demonstrated that Allergin-1 deficiency enhanced intestinal dysbiosis with expanded B. pseudolongum, which contributes to intestinal barrier dysfunction in collaboration with neomycin-sensitive and ampicillin-resistant microbiota.

6.
Gut Pathog ; 16(1): 8, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38336806

BACKGROUND: The impact of the gut microbiota on neuropsychiatric disorders has gained much attention in recent years; however, comprehensive data on the relationship between the gut microbiome and its metabolites and resistance to treatment for depression and anxiety is lacking. Here, we investigated intestinal metabolites in patients with depression and anxiety disorders, and their possible roles in treatment resistance. RESULTS: We analyzed fecal metabolites and microbiomes in 34 participants with depression and anxiety disorders. Fecal samples were obtained three times for each participant during the treatment. Propensity score matching led us to analyze data from nine treatment responders and nine non-responders, and the results were validated in the residual sample sets. Using elastic net regression analysis, we identified several metabolites, including N-ε-acetyllysine; baseline levels of the former were low in responders (AUC = 0.86; 95% confidence interval, 0.69-1). In addition, fecal levels of N-ε-acetyllysine were negatively associated with the abundance of Odoribacter. N-ε-acetyllysine levels increased as symptoms improved with treatment. CONCLUSION: Fecal N-ε-acetyllysine levels before treatment may be a predictive biomarker of treatment-refractory depression and anxiety. Odoribacter may play a role in the homeostasis of intestinal L-lysine levels. More attention should be paid to the importance of L-lysine metabolism in those with depression and anxiety.

7.
mSystems ; 9(2): e0112323, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38205998

Mammalian gut microbes colonize the intestinal tract of their host and adapt to establish a microbial ecosystem. The host diet changes the nutrient profile of the intestine and has a high impact on microbiota composition. Genetic mutations in Escherichia coli, a prevalent species in the human gut, allow for adaptation to the mammalian intestine, as reported in previous studies. However, the extent of colonization fitness in the intestine elevated by genetic mutation and the effects of diet change on these mutations in E. coli are still poorly known. Here, we show that notable mutations in sugar metabolism-related genes (gatC, araC, and malI) were detected in the E. coli K-12 genome just 2 weeks after colonization in the germ-free mouse intestine. In addition to elevated fitness by deletion of gatC, as previously reported, deletion of araC and malI also elevated E. coli fitness in the murine intestine in a host diet-dependent manner. In vitro cultures of medium containing nutrients abundant in the intestine (e.g., galactose, N-acetylglucosamine, and asparagine) also showed increased E. coli fitness after deletion of the genes-of-interest associated with their metabolism. Furthermore, the host diet was found to influence the developmental trajectory of gene mutations in E. coli. Taken together, we suggest that genetic mutations in E. coli are selected in response to the intestinal environment, which facilitates efficient utilization of nutrients abundant in the intestine under laboratory conditions. Our study offers some insight into the possible adaptation mechanisms of gut microbes.IMPORTANCEThe gut microbiota is closely associated with human health and is greatly impacted by the host diet. Bacteria such as Escherichia coli live in the gut all throughout the life of a human host and adapt to the intestinal environment. Adaptive mutations in E. coli are reported to enhance fitness in the mammalian intestine, but to what extent is still poorly known. It is also unknown whether the host diet affects what genes are mutated and to what extent fitness is affected. This study suggests that genetic mutations in the E. coli K-12 strain are selected in response to the intestinal environment and facilitate efficient utilization of abundant nutrients in the germ-free mouse intestine. Our study provides a better understanding of these intestinal adaptation mechanisms of gut microbes.


Ecosystem , Escherichia coli , Humans , Animals , Mice , Escherichia coli/genetics , Diet , Intestines/microbiology , Mutation , Mammals
8.
Microbiol Resour Announc ; 13(1): e0096523, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38014937

Solobacterium moorei JCM 10645T is an obligately anaerobic Gram-positive bacterium that was isolated from a human stool sample, generally known as a bacterium associated with sepsis, bacteremia, halitosis, and periodontal disease. In this study, we report the complete genome sequence of this strain, which is 2.615 Mbp with a 37.2% GC content.

9.
Front Nutr ; 10: 1247683, 2023.
Article En | MEDLINE | ID: mdl-38094924

Dietary fiber improves intestinal environments, by, among others, increasing stool frequency. Kale is a good source of dietary fiber and minerals; however, the effects of kale on the intestinal environment have not yet been evaluated. This study determined how the intestinal environment, including the intestinal microbiota and its metabolome, and stool frequency are affected by the consumption of kale, in humans. A randomized controlled crossover trial, with a 4-week consumption of kale or control food, was conducted. An integrated analysis of the intestinal microbiota and metabolome was performed, and their relationship with improvements in stool frequency was analyzed. Kale intake for 4 weeks significantly increased stool frequency and altered some intestinal microbes, such as an increase in the [Eubacterium] eligens group and a decrease in the [Ruminococcus] gnavus group. Analysis of subjects with increased stool frequency revealed that this group had smaller amounts of stool before kale intake. Our findings indicate that kale modifies certain gut microbes, such as [Eubacterium] eligens and [Ruminococcus] gnavus, and improves bowel movements, particularly in those with smaller stool amounts.

10.
Sci Rep ; 13(1): 22469, 2023 12 18.
Article En | MEDLINE | ID: mdl-38110459

Natto, known for its high vitamin K content, has been demonstrated to suppress atherosclerosis in large-scale clinical trials through a yet-unknown mechanism. In this study, we used a previously reported mouse model, transplanting the bone marrow of mice expressing infra-red fluorescent protein (iRFP) into LDLR-deficient mice, allowing unique and non-invasive observation of foam cells expressing iRFP in atherosclerotic lesions. Using 3 natto strains, we meticulously examined the effects of varying vitamin K levels on atherosclerosis in these mice. Notably, high vitamin K natto significantly reduced aortic staining and iRFP fluorescence, indicative of decreased atherosclerosis. Furthermore, mice administered natto showed changes in gut microbiota, including an increase in natto bacteria within the cecum, and a significant reduction in serum CCL2 expression. In experiments with LPS-stimulated macrophages, adding natto decreased CCL2 expression and increased anti-inflammatory cytokine IL-10 expression. This suggests that natto inhibits atherosclerosis through suppression of intestinal inflammation and reduced CCL2 expression in macrophages.


Atherosclerosis , Plaque, Atherosclerotic , Soy Foods , Animals , Mice , Red Fluorescent Protein , Mice, Knockout , Atherosclerosis/genetics , Atherosclerosis/therapy , Atherosclerosis/metabolism , Receptors, LDL/metabolism , Vitamin K , Mice, Inbred C57BL , Disease Models, Animal
11.
PLoS One ; 18(12): e0296047, 2023.
Article En | MEDLINE | ID: mdl-38117827

BACKGROUND: Growing attention is paid to the association between alterations in the gut microbiota and their metabolites in patients with psychiatric disorders. Our study aimed to determine how gut microbiota and metabolomes are related to the sleep quality among patients with depression and anxiety disorders by analyzing the datasets of our previous study. METHODS: Samples were collected from 40 patients (depression: 32 patients [80.0%]); anxiety disorders: 8 patients [20.0%]) in this study. Gut microbiomes were analyzed using 16S rRNA gene sequencing and gut metabolomes were analyzed by a mass spectrometry approach. Based on the Pittsburgh Sleep Quality Index (PSQI), patients were categorized into two groups: the insomnia group (PSQI score ≥ 9, n = 20) and the non-insomnia group (PSQI score < 9, n = 20). RESULTS: The insomnia group showed a lower alpha diversity in the Chao1 and Shannon indices than the non-insomnia group after the false discovery rate (FDR) correction. The relative abundance of genus Bacteroides showed a positive correlation with PSQI scores in the non-insomnia group. The concentrations of glucosamine and N-methylglutamate were significantly higher in the insomnia group than in the non-insomnia group. CONCLUSIONS: Our findings suggest that specific taxa could affect the sleep quality among patients with depression and anxiety disorders. Further studies are needed to elucidate the impact of sleep on specific gut microbiota and metabolomes in depression and anxiety disorders.


Gastrointestinal Microbiome , Sleep Initiation and Maintenance Disorders , Humans , Anxiety/psychology , Anxiety Disorders , Depression/psychology , Gastrointestinal Microbiome/genetics , Metabolome , RNA, Ribosomal, 16S/genetics , Sleep , Observational Studies as Topic
12.
Front Microbiol ; 14: 1261137, 2023.
Article En | MEDLINE | ID: mdl-38033594

Species utilizing the same resources often fail to coexist for extended periods of time. Such competitive exclusion mechanisms potentially underly microbiome dynamics, causing breakdowns of communities composed of species with similar genetic backgrounds of resource utilization. Although genes responsible for competitive exclusion among a small number of species have been investigated in pioneering studies, it remains a major challenge to integrate genomics and ecology for understanding stable coexistence in species-rich communities. Here, we examine whether community-scale analyses of functional gene redundancy can provide a useful platform for interpreting and predicting collapse of bacterial communities. Through 110-day time-series of experimental microbiome dynamics, we analyzed the metagenome-assembled genomes of co-occurring bacterial species. We then inferred ecological niche space based on the multivariate analysis of the genome compositions. The analysis allowed us to evaluate potential shifts in the level of niche overlap between species through time. We hypothesized that community-scale pressure of competitive exclusion could be evaluated by quantifying overlap of genetically determined resource-use profiles (metabolic pathway profiles) among coexisting species. We found that the degree of community compositional changes observed in the experimental microbiome was correlated with the magnitude of gene-repertoire overlaps among bacterial species, although the causation between the two variables deserves future extensive research. The metagenome-based analysis of genetic potential for competitive exclusion will help us forecast major events in microbiome dynamics such as sudden community collapse (i.e., dysbiosis).

13.
EMBO Rep ; 24(12): e57485, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-37870318

Bacterial infections can activate and mobilize hematopoietic stem and progenitor cells (HSPCs) from the bone marrow (BM) to the spleen, a process termed extramedullary hematopoiesis (EMH). Recent studies suggest that commensal bacteria regulate not only the host immune system but also hematopoietic homeostasis. However, the impact of gut microbes on hematopoietic pathology remains unclear. Here, we find that systemic single injections of Akkermansia muciniphila (A. m.), a mucin-degrading bacterium, rapidly activate BM myelopoiesis and slow but long-lasting hepato-splenomegaly, characterized by the expansion and differentiation of functional HSPCs, which we term delayed EMH. Mechanistically, delayed EMH triggered by A. m. is mediated entirely by the MYD88/TRIF innate immune signaling pathway, which persistently stimulates splenic myeloid cells to secrete interleukin (IL)-1α, and in turn, activates IL-1 receptor (IL-1R)-expressing splenic HSPCs. Genetic deletion of Toll-like receptor-2 and -4 (TLR2/4) or IL-1α partially diminishes A. m.-induced delayed EMH, while inhibition of both pathways alleviates splenomegaly and EMH. Our results demonstrate that cooperative IL-1R- and TLR-mediated signals regulate commensal bacteria-driven EMH, which might be relevant for certain autoimmune disorders.


Hematopoiesis, Extramedullary , Humans , Hematopoiesis, Extramedullary/genetics , Splenomegaly/metabolism , Bone Marrow , Hematopoietic Stem Cells/metabolism , Hematopoiesis
14.
Front Microbiol ; 14: 1233460, 2023.
Article En | MEDLINE | ID: mdl-37901820

Elderly subjects with more than 20 natural teeth have a higher healthy life expectancy than those with few or no teeth. The oral microbiome and its metabolome are associated with oral health, and they are also associated with systemic health via the oral-gut axis. Here, we analyzed the oral and gut microbiome and metabolome profiles of elderly subjects with more than 26 natural teeth. Salivary samples collected as mouth-rinsed water and fecal samples were obtained from 22 healthy individuals, 10 elderly individuals with more than 26 natural teeth and 24 subjects with periodontal disease. The oral microbiome and metabolome profiles of elderly individuals resembled those of subjects with periodontal disease, with the metabolome showing a more substantial differential abundance of components. Despite the distinct oral metabolome profiles, there was no differential abundance of components in the gut microbiome and metabolomes, except for enrichment of short-chain fatty acids in elderly subjects. Finally, to investigate the relationship between the oral and gut microbiome and metabolome, we analyzed bacterial coexistence in the oral cavity and gut and analyzed the correlation of metabolite levels between the oral cavity and gut. However, there were few associations between oral and gut for bacteria and metabolites in either elderly or healthy subjects. Overall, these results indicate distinct oral microbiome and metabolome profiles, as well as the lack of an oral-gut axis in elderly subjects with a high number of natural teeth.

15.
Sci Rep ; 13(1): 16354, 2023 09 29.
Article En | MEDLINE | ID: mdl-37773322

Allium macrostemon Bunge, commonly referred to as "no-biru" in Japan, is a widespread wild onion species found across the country. Despite being deeply entwined in ancient Japanese culture, it remains an underutilized crop in Japan. Determining the origins of its domestic populations and understanding their genetic composition is crucial to highlighting the plant's historical significance in Japan. This study aims to bridge this knowledge gap by examining the genetic diversity of 47 A. macrostemon samples from various regions in Japan using RAD-Seq. Our analyses distinguished unique population structures, dividing the samples into three distinct groups: A, B, and C. Notably, groups A and B showed clear evidence of bulb propagation, while group C did not. Group C formed four subgroups: C1, C2, C3, and C4. Hybridization between subgroup C1 and either group A, B, or both, resulted in the emergence of subgroups C2, C3, and C4. Thus, groups A, B, and C1 are posited as the ancestral populations. Additionally, our morphological observations indicated distinct differences among these three groups. Our findings also suggest that human migration may have influenced the plant's distribution, hinting at active usage in the past that later waned, causing its current underutilized status.


Chive , Japan , Chive/genetics
16.
mSystems ; 8(5): e0068323, 2023 Oct 26.
Article En | MEDLINE | ID: mdl-37698410

IMPORTANCE: We characterized the oral conditions, salivary microbiome, and metabolome after dental treatment by investigating the state after treatment completion and transition to self-care. Dental treatment improved oral health conditions, resulting in oral disease remission; however, the imbalanced state of the salivary microbiome continued even after remission. Although the results of this study are preliminary, owing to the small number of participants in each group when compared to larger cohort studies, they indicate that the risk of disease may remain higher than that of healthy participants, thereby demonstrating the importance of removing dental plaque containing disease-related bacteria using appropriate care even after treatment completion. We also identified bacterial species with relative abundances that differed from those of healthy participants even after remission of symptoms, which may indicate that the maturation of certain bacterial species must be controlled to improve the oral microbiome and reduce the risk of disease recurrence.


Dental Caries , Microbiota , Periodontal Diseases , Humans , Dysbiosis , Dental Caries/therapy , Bacteria , Dental Care
17.
Front Microbiol ; 14: 1179534, 2023.
Article En | MEDLINE | ID: mdl-37485510

Irritable bowel syndrome (IBS) has no clinically accepted biomarkers even though it affects a large number of individuals worldwide. To address this lack of understanding, we evaluated peptidase activity in fecal samples from 35 patients with diarrheal IBS without symptom exacerbation (IBS-n) and 35 healthy subjects using a library of 384 fluorescent enzymatic substrate probes. IBS-n patients had high trypsin-like peptidase activity for cleavage of C-terminal lysine and arginine residues and low elastase-like activity for cleavage of C-terminal serine and glycine residues. These fluorescent probe library data, together with diagnostic machine-learning techniques, were able to accurately predict IBS-n. This approach can be used to diagnose diseases where no clinically accepted biomarkers exist, in which fecal enzyme activity is altered and also suggests that the development of new therapies targeting enzyme activities is possible.

18.
Nat Commun ; 14(1): 3863, 2023 06 30.
Article En | MEDLINE | ID: mdl-37391427

Fever is a common symptom of influenza and coronavirus disease 2019 (COVID-19), yet its physiological role in host resistance to viral infection remains less clear. Here, we demonstrate that exposure of mice to the high ambient temperature of 36 °C increases host resistance to viral pathogens including influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). High heat-exposed mice increase basal body temperature over 38 °C to enable more bile acids production in a gut microbiota-dependent manner. The gut microbiota-derived deoxycholic acid (DCA) and its plasma membrane-bound receptor Takeda G-protein-coupled receptor 5 (TGR5) signaling increase host resistance to influenza virus infection by suppressing virus replication and neutrophil-dependent tissue damage. Furthermore, the DCA and its nuclear farnesoid X receptor (FXR) agonist protect Syrian hamsters from lethal SARS-CoV-2 infection. Moreover, we demonstrate that certain bile acids are reduced in the plasma of COVID-19 patients who develop moderate I/II disease compared with the minor severity of illness group. These findings implicate a mechanism by which virus-induced high fever increases host resistance to influenza virus and SARS-CoV-2 in a gut microbiota-dependent manner.


COVID-19 , Gastrointestinal Microbiome , Influenza A virus , Influenza, Human , Cricetinae , Animals , Mice , Humans , SARS-CoV-2 , Body Temperature , Fever , Bile Acids and Salts , Mesocricetus
19.
Nat Cell Biol ; 25(6): 865-876, 2023 06.
Article En | MEDLINE | ID: mdl-37169880

The elucidation of the mechanisms of ageing and the identification of methods to control it have long been anticipated. Recently, two factors associated with ageing-the accumulation of senescent cells and the change in the composition of gut microbiota-have been shown to play key roles in ageing. However, little is known about how these phenomena occur and are related during ageing. Here we show that the persistent presence of commensal bacteria gradually induces cellular senescence in gut germinal centre B cells. Importantly, this reduces both the production and diversity of immunoglobulin A (IgA) antibodies that target gut bacteria, thereby changing the composition of gut microbiota in aged mice. These results have revealed the existence of IgA-mediated crosstalk between the gut microbiota and cellular senescence and thus extend our understanding of the mechanism of gut microbiota changes with age, opening up possibilities for their control.


Gastrointestinal Microbiome , Animals , Mice , Bacteria , Immunoglobulin A , Cellular Senescence , B-Lymphocytes
20.
J Biol Chem ; 299(6): 104826, 2023 06.
Article En | MEDLINE | ID: mdl-37196767

Cutaneous hyaluronan (HA) is depolymerized to intermediate sizes in the extracellular matrix, and further fragmented in the regional lymph nodes. Previously, we showed that the HA-binding protein involved in HA depolymerization (HYBID), also known as KIAA1199/CEMIP, is responsible for the first step of HA depolymerization. Recently, mouse transmembrane 2 (mTMEM2) with high structural similarity to HYBID was proposed to be a membrane-bound hyaluronidase. However, we showed that the knockdown of human TMEM2 (hTMEM2) conversely promoted HA depolymerization in normal human dermal fibroblasts (NHDFs). Therefore, we examined the HA-degrading activity and function of hTMEM2 using HEK293T cells. We found that human HYBID and mTMEM2, but not hTMEM2, degraded extracellular HA, indicating that hTMEM2 does not function as a catalytic hyaluronidase. Analysis of the HA-degrading activity of chimeric TMEM2 in HEK293T cells suggested the importance of the mouse GG domain. Therefore, we focused on the amino acid residues that are conserved in active mouse and human HYBID and mTMEM2 but are substituted in hTMEM2. The HA-degrading activity of mTMEM2 was abolished when its His248 and Ala303 were simultaneously replaced by the corresponding residues of inactive hTMEM2 (Asn248 and Phe303). In NHDFs, enhancement of hTMEM2 expression by proinflammatory cytokines decreased HYBID expression and increased hyaluronan synthase 2-dependent HA production. The effects of proinflammatory cytokines were abrogated by hTMEM2 knockdown. A decreased HYBID expression by interleukin-1ß and transforming growth factor-ß was canceled by hTMEM2 knockdown. In conclusion, these results indicate that hTMEM2 is not a catalytic hyaluronidase, but a regulator of HA metabolism.


Hyaluronic Acid , Hyaluronoglucosaminidase , Animals , Humans , Mice , Cytokines , HEK293 Cells , Hyaluronan Synthases/genetics , Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/genetics , Hyaluronoglucosaminidase/metabolism
...