Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Int J Lab Hematol ; 46(3): 495-502, 2024 Jun.
Article En | MEDLINE | ID: mdl-38379463

BACKGROUND: Detection of del(17p) in myeloma is generally performed by fluorescence in situ hybridization (FISH) on a slide with analysis of up to 200 nuclei. The small cell sample analyzed makes this a low precision test. We report the utility of an automated FISH method, called "immuno-flowFISH", to detect plasma cells with adverse prognostic risk del(17p) in bone marrow and blood samples of patients with myeloma. METHODS: Bone marrow (n = 31) and blood (n = 19) samples from 35 patients with myeloma were analyzed using immuno-flowFISH. Plasma cells were identified by CD38/CD138-immunophenotypic gating and assessed for the 17p locus and centromere of chromosome 17. Cells were acquired on an AMNIS ImageStreamX MkII imaging flow cytometer using INSPIRE software. RESULTS: Chromosome 17 abnormalities were identified in CD38/CD138-positive cells in bone marrow (6/31) and blood (4/19) samples when the percent plasma cell burden ranged from 0.03% to 100% of cells. Abnormalities could be identified in 14.5%-100% of plasma cells. CONCLUSIONS: The "immuno-flowFISH" imaging flow cytometric method could detect del(17p) in plasma cells in both bone marrow and blood samples of myeloma patients. This method was also able to detect gains and losses of chromosome 17, which are also of prognostic significance. The lowest levels of 0.009% (bone marrow) and 0.001% (blood) for chromosome 17 abnormalities was below the detection limit of current FISH method. This method offers potential as a new means of identifying these prognostically important chromosomal defects, even when only rare cells are present and for serial disease monitoring.


Chromosomes, Human, Pair 17 , Flow Cytometry , In Situ Hybridization, Fluorescence , Multiple Myeloma , Plasma Cells , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Multiple Myeloma/blood , Multiple Myeloma/pathology , Plasma Cells/pathology , Flow Cytometry/methods , Chromosomes, Human, Pair 17/genetics , Male , Female , Aged , Middle Aged , Bone Marrow/pathology , Chromosome Deletion , Aged, 80 and over , Immunophenotyping , Adult
3.
Int J Lab Hematol ; 45(4): 425-435, 2023 Aug.
Article En | MEDLINE | ID: mdl-37337970

Chimeric antigen receptor (CAR) T-cell therapy is a novel adoptive T-cell immunotherapy for haematological malignancies. First introduced into clinical practice in 2017, CAR T-cell therapy is now finding its place in the management of lymphoid malignancies, primarily of B-cell lineage, including lymphoblastic leukaemia, non-Hodgkin lymphoma and plasma cell myeloma, with remarkable therapeutic outcomes. CAR T-cells are a customised therapeutic product for each patient. Manufacture commences with collection of autologous T-cells, which are then genetically engineered ex vivo to express transmembrane CARs. These chimeric proteins consist of an antibody-like extracellular antigen-binding domain, to recognise specific antigens on the surface of tumour cells (e.g. CD19), linked to the intracellular co-stimulatory signalling domains of a T-cell receptor (e.g. CD137). The latter is required for in vivo CAR T-cell proliferation, survival, and durable efficacy. Following reinfusion, CAR T-cells harness the cytotoxic capacity of a patient's immune system. They overcome major mechanisms of tumour immuno-evasion and have potential to generate robust cytotoxic anti-tumour responses. This review discusses the background to CAR T-cell therapies, including their molecular design, mechanisms of action, methods of production, clinical applications and established and emerging technologies for CAR T-cell evaluation. It highlights the need for standardisation, quality control and monitoring of CAR T-cell therapies, to ensure their safety and efficacy in clinical management.


Antineoplastic Agents , Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes , Multiple Myeloma/therapy , Quality Control
5.
Methods Mol Biol ; 2635: 149-171, 2023.
Article En | MEDLINE | ID: mdl-37074662

Imaging flow cytometry has the capacity to bridge the gap that currently exists between the diagnostic tests that detect important phenotypic and genetic changes in the clinical assessment of leukemia and other hematological malignancies or blood-based disorders. We have developed an "Immuno-flowFISH" method that leverages the quantitative and multi-parametric power of imaging flow cytometry to push the limits of single-cell analysis. Immuno-flowFISH has been fully optimized to detect clinically significant numerical and structural chromosomal abnormalities (i.e., trisomy 12 and del(17p)) within clonal CD19/CD5+ CD3- Chronic Lymphocytic Leukemia (CLL) cells in a single test. This integrated methodology has greater accuracy and precision than standard fluorescence in situ hybridization (FISH). We have detailed this immuno-flowFISH application with a carefully catalogued workflow, technical instructions, and a repertoire of quality control considerations to supplement the analysis of CLL. This next-generation imaging flow cytometry protocol may provide unique advancements and opportunities in the holistic cellular assessment of disease for both research and clinical laboratory settings.


Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , In Situ Hybridization, Fluorescence/methods , Chromosome Aberrations , Trisomy , Flow Cytometry
6.
J Clin Pathol ; 76(11): 763-769, 2023 Nov.
Article En | MEDLINE | ID: mdl-36113967

AIMS: Cytogenetic abnormalities involving the IGH gene are seen in up to 55% of patients with multiple myeloma. Current testing is performed manually by fluorescence in situ hybridisation (FISH) on purified plasma cells. We aimed to assess whether an automated imaging flow cytometric method that uses immunophenotypic cell identification, and does not require cell isolation, can identify IGH abnormalities. METHODS: Aspirated bone marrow from 10 patients with multiple myeloma were studied. Plasma cells were identified by CD38 and CD138 coexpression and assessed with FISH probes for numerical or structural abnormalities of IGH. Thousands of cells were acquired on an imaging flow cytometer and numerical data and digital images were analysed. RESULTS: Up to 30 000 cells were acquired and IGH chromosomal abnormalities were detected in 5 of the 10 marrow samples. FISH signal patterns seen included fused IGH signals for IGH/FGFR3 and IGH/MYEOV, indicating t(4;14) and t(11;14), respectively. In addition, three IGH signals were identified, indicating trisomy 14 or translocation with an alternate chromosome. The lowest limit of detection of an IGH abnormality was in 0.05% of all cells. CONCLUSIONS: This automated high-throughput immuno-flowFISH method was able to identify translocations and trisomy involving the IGH gene in plasma cells in multiple myeloma. Thousands of cells were analysed and without prior cell isolation. The inclusion of positive plasma cell identification based on immunophenotype led to a lowest detection level of 0.05% marrow cells. This imaging flow cytometric FISH method offers the prospect of increased precision of detection of critical genetic lesions involving IGH and other chromosomal defects in multiple myeloma.


Chromosome Aberrations , Genes, Immunoglobulin Heavy Chain , Multiple Myeloma , Humans , Flow Cytometry , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Translocation, Genetic , Trisomy/genetics , Genes, Immunoglobulin Heavy Chain/genetics
7.
Methods ; 112: 46-54, 2017 01 01.
Article En | MEDLINE | ID: mdl-27720831

Platelets are subcellular blood elements with a well-established role in haemostasis. Upon activation platelets undergo granule exocytosis, resulting in α-granule P-Selectin being expressed on the cell membrane. This allows binding of activated platelets to P-Selectin glycoprotein ligand 1 (PSGL-1) expressing leukocytes, forming leukocyte-platelet aggregates (LPAs). Whole blood flow cytometry (FCM) has demonstrated that elevated circulating LPAs (especially monocyte LPAs) are linked to atherothrombosis in high risk patients, and that activated platelet binding influences monocytes towards a pro-adhesive and pro-atherogenic phenotype. However, a limitation of conventional FCM is the potential for coincident events to resemble LPAs despite no tethering. Imaging cytometry can be used to characterize LPA formation and distinguish circulating MPAs from coincidental events. Platelets and leukocyte subsets are identified by expression of surface markers (e.g. the lipopolysachharide receptor CD14 on monocytes, glycoprotein Ib CD42b on platelets). In conventional FCM, all events with both leukocyte and platelet characteristics are designated as LPAs. However, by using an 'internal' mask based on the brightfield image and the fluorescent platelet identifier, imaging flow cytometry is able to distinguish leukocytes with tethered platelets (genuine LPAs) from leukocyte with coincidental, untethered platelets nearby. Mechanisms (e.g. adhesion molecules) or consequences (e.g. signal transduction) can then be separately analysed in platelet tethered and untethered leukocytes. Imaging flow cytometry therefore provides a more accurate approach for both enumeration and analysis of LPAs than conventional FCM.


Blood Platelets/immunology , Cell Communication/immunology , Flow Cytometry/methods , Image Cytometry/methods , Monocytes/immunology , Neutrophils/immunology , Biomarkers/metabolism , Blood Platelets/cytology , Cell Aggregation/immunology , Flow Cytometry/instrumentation , Gene Expression , Humans , Image Cytometry/instrumentation , Lipopolysaccharide Receptors/genetics , Lipopolysaccharide Receptors/immunology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Monocytes/cytology , Neutrophils/cytology , P-Selectin/genetics , P-Selectin/immunology , Platelet Activation , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Glycoprotein GPIb-IX Complex/immunology , Protein Binding
...