Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
Add more filters











Publication year range
1.
Bio Protoc ; 14(17): e5059, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39282235

ABSTRACT

Accurate quantification of von Willebrand factor ristocetin cofactor activity (VWF:RCo) is critical for the diagnosis and classification of von Willebrand disease, the most common hereditary and acquired bleeding disorder in humans. Moreover, it is important to accurately assess the function of von Willebrand factor (VWF) concentrates within the pharmaceutical industry to provide consistent and high-quality biopharmaceuticals. Although the performance of VWF:RCo assay has been improved by using coagulation analyzers, which are specialized devices for blood and blood plasma samples, scientists still report a high degree of intra- and inter-assay variation in clinical laboratories. Moreover, high, manual sample dilutions are required for VWF:RCo determination of VWF concentrates within the pharmaceutical industry, which are a major source for assay imprecision. For the first time, we present a precise and accurate method to determine VWF:RCo, where all critical pipetting and mixing steps are automated. A pre-dilution setup was established on CyBio FeliX (Analytik-Jena) liquid handling system, and an adapted VWF:RCo method on BCS-XP analyzer (Siemens) is used. The automated pre-dilution method was executed on three different, most frequently used coagulation analyzers and compared to manual pre-dilutions performed by an experienced operator. Comparative sample testing revealed a similar assay precision (coefficient of variation = 5.9% automated, 3.1% manual pre-dilution) and no significant differences between the automated approach and manual dilutions of an expert in this method. While no outliers were generated with the automated procedure, the manual pre-dilution resulted in an error rate of 8.3%. Overall, this operator-independent protocol enables standardization and offers an efficient way of fully automating VWF activity assays, while maintaining the precision and accuracy of an expert analyst. Key features • Automated pre-dilution setup for von Willebrand factor concentrates of various natures. • Combination of a liquid handling system (CyBio FeliX) with a coagulation analyzer (BCS-XP). • Simplifies method transfer to other laboratories. • Basic training for CyBio FeliX and BCS-XP is required. Graphical overview VWF:RCo assay principle and measurement setup. Platelets (yellow ellipsoids) with negative surface charge (- - -) are treated with formaldehyde, which partly denatures the cell surface and thus stabilizes platelets for use as assay reagents. Stabilized platelets (dark-yellow-framed yellow ellipsoids) are then brought in contact with ristocetin A (chemical structure shown; black dots), which binds to the platelet surface and facilitates binding of VWF (green circles). The graphs show an example of quantitative determination of platelet agglutination by measurement of light transmission, where increasing amounts of VWF increase light transmission over time. The photo in the left-bottom corner shows the CyBio FeliX setup for VWF sample dilution and the photo in the right-bottom corner displays the BCS-XP system, which is used for VWF:RCo measurements.

2.
J Inorg Biochem ; 260: 112681, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39146673

ABSTRACT

Iron insertion into porphyrins is an essential step in heme biosynthesis. In the coproporphyrin-dependent pathway, specific to monoderm bacteria, this reaction is catalyzed by the monomeric enzyme coproporphyrin ferrochelatase. In addition to the mechanistic details of the metalation of the porphyrin, the identification of the substrate access channel for ferrous iron to the active site is important to fully understand this enzymatic system. In fact, whether the iron reaches the active site from the distal or the proximal porphyrin side is still under debate. In this study we have thoroughly addressed this question in Listeria monocytogenes coproporphyrin ferrochelatase by X-ray crystallography, steady-state and pre-steady-state imidazole ligand binding studies, together with a detailed spectroscopic characterization using resonance Raman and UV-vis absorption spectroscopies in solution. Analysis of the X-ray structures of coproporphyrin ferrochelatase-coproporphyrin III crystals soaked with ferrous iron shows that iron is present on both sides of the porphyrin. The kinetic and spectroscopic study of imidazole binding to coproporphyrin ferrochelatase­iron coproporphyrin III clearly indicates the presence of two possible binding sites in this monomeric enzyme that influence each other, which is confirmed by the observed cooperativity at steady-state and a biphasic behavior in the pre-steady-state experiments. The current results are discussed in the context of the entire heme biosynthetic pathway and pave the way for future studies focusing on protein-protein interactions.


Subject(s)
Coproporphyrins , Ferrochelatase , Imidazoles , Ferrochelatase/metabolism , Ferrochelatase/chemistry , Imidazoles/chemistry , Imidazoles/metabolism , Crystallography, X-Ray , Coproporphyrins/metabolism , Coproporphyrins/chemistry , Listeria monocytogenes/enzymology , Heme/metabolism , Heme/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Catalytic Domain , Iron/chemistry , Iron/metabolism , Protein Binding
3.
Article in English | MEDLINE | ID: mdl-38993681

ABSTRACT

The biological chemistry of hydrogen sulfide (H2S) with physiologically important heme proteins is in the focus of redox biology research. In this study, we investigated the interactions of lactoperoxidase (LPO) with H2S in the presence and absence of molecular dioxygen (O2) or hydrogen peroxide (H2O2). Under anaerobic conditions, native LPO forms no heme-H2S complex upon sulfide exposure. However, under aerobic conditions or in the presence of H2O2 the formation of both ferrous and ferric sulfheme (sulfLPO) derivatives was observed based on the appearances of their characteristic optical absorptions at 638 nm and 727 nm, respectively. Interestingly, we demonstrate that LPO can catalytically oxidize H2S by H2O2 via intermediate formation of relatively short-lived ferrous and ferric sulfLPO derivatives. Pilot product analyses suggested that the turnover process generates oxidized sulfide species, which include sulfate S O 4 2 - and inorganic polysulfides ( H S x - ; x = 2-5). These results indicated that H2S can serve as a non-classical LPO substrate by inducing a reversible sulfheme-like modification of the heme porphyrin ring during turnover. Furthermore, electron paramagnetic resonance data suggest that H2S can act as a scavenger of H2O2 in the presence of LPO without detectable formation of any carbon-centered protein radical species, suggesting that H2S might be capable of protecting the enzyme from radical-mediated damage. We propose possible mechanisms, which explain our results as well as contrasting observations with other heme proteins, where either no sulfheme formation was observed or the generation of sulfheme derivatives provided a dead end for enzyme functions.

4.
Heliyon ; 9(12): e22463, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38046162

ABSTRACT

Functionalization of proteins by incorporating reactive non-canonical amino acids (ncAAs) has been widely applied for numerous biological and therapeutic applications. The requirement not to lose the intrinsic properties of these proteins is often underestimated and not considered. Main purpose of this study was to answer the question whether functionalization via residue-specific incorporation of the ncAA N6-[(2-Azidoethoxy) carbonyl]-l-lysine (Azk) influences the properties of the anti-tumor-necrosis-factor-α-Fab (FTN2). Therefore, FTN2Azk variants with different Azk incorporation sites were designed and amber codon suppression was used for production. The functionalized FTN2Azk variants were efficiently produced in fed-batch like µ-bioreactor cultivations in the periplasm of E. coli displaying correct structure and antigen binding affinities comparable to those of wild-type FTN2. Our FTN2Azk variants with reactive handles for diverse conjugates enable tracking of recombinant protein in the production cell, pharmacological studies and translation into new pharmaceutical applications.

5.
Biology (Basel) ; 12(12)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38132353

ABSTRACT

Coproporphyrinogen oxidase (CgoX) and protoporphyrinogen oxidase (PgoX) catalyze the oxidation of the flexible cyclic tetrapyrrole of porphyrinogen compounds into fully conjugated, planar macrocyclic porphyrin compounds during heme biosynthesis. These enzymes are activated via different pathways. CgoX oxidizes coproporphyrinogen III to coproporphyrin III in the coproporphyrin-dependent pathway, whereas PgoX oxidizes protoporphyrinogen IX to protoporphyrin IX in the penultimate step of the protoporphyrin-dependent pathway. The phylogenetic analysis presented herein demonstrates a clear differentiation between the two enzyme classes, as evidenced by the clustering of sequences in distinct clades, and it shows that, at the origin of porphyrinogen-type oxidase evolution, PgoXs from cyanobacteria were found, which were noticeably separated from descendant PgoX representatives of Deltaproteobacteria and all later PgoX variants, leading to many eukaryotic clades. CgoX sequences originating from the monoderm Actinomycetota and Bacillota were well separated from the predecessor clades containing PgoX types and represent a peculiar type of gene speciation. The structural similarities and differences between these two oxidases are discussed based on their protein sequence alignment and a structural comparison.

6.
Comput Struct Biotechnol J ; 21: 3933-3945, 2023.
Article in English | MEDLINE | ID: mdl-37593721

ABSTRACT

The coproporphyrin dependent heme biosynthesis pathway is almost exclusively utilized by Gram-positive bacteria. This fact makes it a worthwhile topic for basic research, since a fundamental understanding of a metabolic pathway is necessary to translate the focus towards medical biotechnology, which is very relevant in this specific case, considering the need for new antibiotic targets to counteract the pathogenicity of Gram-positive superbugs. Over the years a lot of structural data on the set of enzymes acting in Gram-positive heme biosynthesis has accumulated in the Protein Database (www.pdb.org). One major challenge is to filter and analyze all available structural information in sufficient detail in order to be helpful and to draw conclusions. Here we pursued to give a holistic overview of structural information on enzymes involved in the coproporphyrin dependent heme biosynthesis pathway. There are many aspects to be extracted from experimentally determined structures regarding the reaction mechanisms, where the smallest variation of the position of an amino acid residue might be important, but also on a larger level regarding protein-protein interactions, where the focus has to be on surface characteristics and subunit (secondary) structural elements and oligomerization. This review delivers a status quo, highlights still missing information, and formulates future research endeavors in order to better understand prokaryotic heme biosynthesis.

7.
Biomolecules ; 13(6)2023 06 06.
Article in English | MEDLINE | ID: mdl-37371526

ABSTRACT

Coproheme decarboxylases (ChdCs) are terminal enzymes of the coproporphyrin-dependent heme biosynthetic pathway. In this reaction, two propionate groups are cleaved from the redox-active iron-containing substrate, coproheme, to form vinyl groups of the heme b product. The two decarboxylation reactions proceed sequentially, and a redox-active three-propionate porphyrin, called monovinyl, monopropionate deuteroheme (MMD), is transiently formed as an intermediate. While the reaction mechanism for the first part of the redox reaction, which is initiated by hydrogen peroxide, has been elucidated in some detail, the second part of this reaction, starting from MMD, has not been studied. Here, we report the optimization of enzymatic MMD production by ChdC and purification by reversed-phase chromatography. With the obtained MMD, we were able to study the second part of heme b formation by actinobacterial ChdC from Corynebacterium diphtheriae, starting with Compound I formation upon the addition of hydrogen peroxide. The results indicate that the second part of the decarboxylation reaction is analogous to the first part, although somewhat slower, which is explained by differences in the active site architecture and its H-bonding network. The results are discussed in terms of known kinetic and structural data and help to fill some mechanistic gaps in the overall reaction catalyzed by ChdCs.


Subject(s)
Carboxy-Lyases , Hydrogen Peroxide , Hydrogen Peroxide/metabolism , Propionates/chemistry , Heme/metabolism , Carboxy-Lyases/chemistry
8.
J Sep Sci ; 46(8): e2200943, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36807776

ABSTRACT

Detailed studies on the sorption behavior of plasmids on anion exchangers are rare compared to proteins. In this study, we systematically compare the elution behavior of plasmid DNA on three common anion exchange resins using linear gradient and isocratic elution experiments. Two plasmids of different lengths, 8 and 20 kbp, were studied and their elution characteristics were compared to a green fluorescent protein. Using established methods for determining retention characteristics of biomolecules in ion exchange chromatography lead to remarkable results. In contrast to the green fluorescent protein, plasmid DNA consistently elutes at one characteristic salt concentration in linear gradient elution. This salt concentration was the same independent of plasmid size but differed slightly for different resins. The behavior is consistent also at preparative loadings of plasmid DNA. Thus, only a single linear gradient elution experiment is sufficient to design elution in a process scale capture step. At isocratic elution conditions, plasmid DNA elutes only above this characteristic concentration. Even at slightly lower concentrations most plasmids remain tightly bound. We hypothesize, that the desorption is accompanied by a conformational change leading to a reduced number of available negative charges for binding. This explanation is supported by structural analysis before and after elution.


Subject(s)
DNA , Sodium Chloride , Green Fluorescent Proteins/genetics , Plasmids , DNA/chemistry , Chromatography, Ion Exchange/methods , Sodium Chloride/chemistry , Anions
9.
Antioxidants (Basel) ; 12(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36829861

ABSTRACT

Electronic structure calculations using the density-functional theory (DFT) have been performed to analyse the effect of water molecules and protonation on the heme group of peroxidases in different redox (ferric, ferrous, compounds I and II) and spin states. Shared geometries, spectroscopic properties at the Soret region, and the thermodynamics of peroxidases are discussed. B3LYP and M06-2X density functionals with different basis sets were employed on a common molecular model of the active site (Fe-centred porphine and proximal imidazole). Computed Gibbs free energies indicate that the corresponding aquo complexes are not thermodynamically stable, supporting the five-coordinate Fe(III) centre in native ferric peroxidases, with a water molecule located at a non-bonding distance. Protonation of the ferryl oxygen of compound II is discussed in terms of thermodynamics, Fe-O bond distances, and redox properties. It is demonstrated that this protonation is necessary to account for the experimental data, and computed Gibbs free energies reveal pKa values of compound II about 8.5-9.0. Computation indicates that the general oxidative properties of peroxidase intermediates, as well as their reactivity towards water and protons and Soret bands, are mainly controlled by the iron porphyrin and its proximal histidine ligand.

10.
Biochemistry ; 62(3): 835-850, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36706455

ABSTRACT

The heme enzyme chlorite dismutase (Cld) catalyzes the degradation of chlorite to chloride and dioxygen. Many questions about the molecular reaction mechanism of this iron protein have remained unanswered, including the electronic nature of the catalytically relevant oxoiron(IV) intermediate and its interaction with the distal, flexible, and catalytically active arginine. Here, we have investigated the dimeric Cld from Cyanothece sp. PCC7425 (CCld) and two variants having the catalytic arginine R127 (i) hydrogen-bonded to glutamine Q74 (wild-type CCld), (ii) arrested in a salt bridge with a glutamate (Q74E), or (iii) being fully flexible (Q74V). Presented stopped-flow spectroscopic studies demonstrate the initial and transient appearance of Compound I in the reaction between CCld and chlorite at pH 5.0 and 7.0 and the dominance of spectral features of an oxoiron(IV) species (418, 528, and 551 nm) during most of the chlorite degradation period at neutral and alkaline pH. Arresting the R127 in a salt bridge delays chlorite decomposition, whereas increased flexibility accelerates the reaction. The dynamics of R127 does not affect the formation of Compound I mediated by hypochlorite but has an influence on Compound I stability, which decreases rapidly with increasing pH. The decrease in activity is accompanied by the formation of protein-based amino acid radicals. Compound I is demonstrated to oxidize iodide, chlorite, and serotonin but not hypochlorite. Serotonin is able to dampen oxidative damage and inactivation of CCld at neutral and alkaline pH. Presented data are discussed with respect to the molecular mechanism of Cld and the pronounced pH dependence of chlorite degradation.


Subject(s)
Arginine , Serotonin , Hydrogen-Ion Concentration , Kinetics
11.
Antioxidants (Basel) ; 13(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38275643

ABSTRACT

Human peroxidasin (PXDN) is a ubiquitous peroxidase enzyme expressed in most tissues in the body. PXDN represents an interesting therapeutic target for inhibition, as it plays a role in numerous pathologies, including cardiovascular disease, cancer and fibrosis. Like other peroxidases, PXDN generates hypohalous acids and free radical species, thereby facilitating oxidative modifications of numerous biomolecules. We have studied the inhibition of PXDN halogenation and peroxidase activity by phloroglucinol and 14 other peroxidase inhibitors. Although a number of compounds on their own potently inhibited PXDN halogenation activity, only five were effective in the presence of a peroxidase substrate with IC50 values in the low µM range. Using sequential stopped-flow spectrophotometry, we examined the mechanisms of inhibition for several compounds. Phloroglucinol was the most potent inhibitor with a nanomolar IC50 for purified PXDN and IC50 values of 0.95 µM and 1.6 µM for the inhibition of hypobromous acid (HOBr)-mediated collagen IV cross-linking in a decellularized extracellular matrix and a cell culture model. Other compounds were less effective in these models. Most interestingly, phloroglucinol was identified to irreversibly inhibit PXDN, either by mechanism-based inhibition or tight binding. Our work has highlighted phloroglucinol as a promising lead compound for the design of highly specific PXDN inhibitors and the assays used in this study provide a suitable approach for high-throughput screening of PXDN inhibitors.

12.
J Biol Chem ; 299(12): 105402, 2023 12.
Article in English | MEDLINE | ID: mdl-38229400

ABSTRACT

Eosinophil peroxidase (EPO) is the most abundant granule protein exocytosed by eosinophils, specialized human phagocytes. Released EPO catalyzes the formation of reactive oxidants from bromide, thiocyanate, and nitrite that kill tissue-invading parasites. However, EPO also plays a deleterious role in inflammatory diseases, making it a potential pharmacological target. A major hurdle is the high similarity to the homologous myeloperoxidase (MPO), which requires a detailed understanding of the small structural differences that can be used to increase the specificity of the inhibitors. Here, we present the first crystal structure of mature leukocyte EPO at 1.6 Å resolution together with analyses of its posttranslational modifications and biochemical properties. EPO has an exceptionally high number of positively charged surface patches but only two occupied glycosylation sites. The crystal structure further revealed the existence of a light (L) and heavy (H) chain as a result of proteolytic cleavage. Detailed comparison with the structure of human MPO allows us to identify differences that may contribute to the known divergent enzymatic properties. The crystal structure revealed fully established ester links between the prosthetic group and the protein, the comparably weak imidazolate character of the proximal histidine, and the conserved structure of the catalytic amino acids and Ca2+-binding site. Prediction of the structure of unprocessed proeosinophil peroxidase allows further structural analysis of the three protease cleavage sites and the potential pro-convertase recognition site in the propeptide. Finally, EPO biosynthesis and its biochemical and biophysical properties are discussed with respect to the available data from the well-studied MPO.


Subject(s)
Eosinophil Peroxidase , Heme , Humans , Eosinophil Peroxidase/chemistry , Eosinophils/enzymology , Heme/chemistry , Protein Processing, Post-Translational
13.
J Biol Chem ; 298(11): 102514, 2022 11.
Article in English | MEDLINE | ID: mdl-36150500

ABSTRACT

The heme enzyme myeloperoxidase (MPO) is one of the key players in the neutrophil-mediated killing of invading pathogens as part of the innate immune system. MPO generates antimicrobial oxidants, which indiscriminately and effectively kill phagocytosed pathogens. Staphylococcus aureus, however, is able to escape this fate, in part by secreting a small protein called SPIN (Staphylococcal Peroxidase Inhibitor), which specifically targets and inhibits MPO in a structurally complex manner. Here, we present the first crystal structures of the complex of SPIN-aureus and a truncated version (SPIN-truncated) with mature dimeric leukocyte MPO. We unravel the contributions of the two domains to the kinetics and thermodynamics of SPIN-aureus binding to MPO by using a broad array of complementary biochemical and biophysical methods. The C-terminal "recognition" domain is shown to mediate specific binding to MPO, while interaction of the N-terminal "inhibitory" domain is guided mainly by hydrophobic effects and thus is less sequence dependent. We found that inhibition of MPO is achieved by reducing substrate migration, but SPIN-aureus cannot completely block MPO activity. Its' effectiveness is inversely related to substrate size, with no discernible dependence on other factors. Thus, SPIN-aureus is an extremely high-affinity inhibitor and highly efficient for substrates larger than halogens. As aberrant MPO activity is implicated in a number of chronic inflammatory diseases, SPIN-aureus is the first promising protein inhibitor for specific inhibition of human MPO.


Subject(s)
Peroxidase , Staphylococcal Infections , Humans , Peroxidase/metabolism , Staphylococcus , Staphylococcus aureus/metabolism , Neutrophils/metabolism
14.
J Photochem Photobiol B ; 226: 112369, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34864529

ABSTRACT

Myeloperoxidase (MPO) is a myeloid-lineage restricted enzyme largely expressed in the azurophilic granules of neutrophils. It catalyses the formation of reactive oxygen species, mainly hypochlorous acid, contributing to anti-pathogenic defense. Disorders in the production or regulation of MPO may lead to a variety of health conditions, mainly of inflammatory origin, including autoimmune inflammation. We have studied the effect of ionizing radiation on the activity of MPO, as measured by the capacity retained by the enzyme to produce hypochlorous acid as reactive oxygen species after exposure to successive doses of solvated electrons, the strongest possible one-e- reducing agent in water. Chlorination activity was still present after a very high irradiation dose, indicating that radiation damage does not take place at the active site, hindered in the core of MPO structure. Decay kinetics show a dependence on the wavelength, supporting that the process must occur at peripheral functional groups situated on external and readily accessible locations of the enzyme. These results are relevant to understand the mechanism of resistance of our innate anti-pathogenic defense system and also to get insight into potential strategies to regulate MPO levels as a therapeutic target in autoimmune diseases.


Subject(s)
Peroxidase
15.
FEBS J ; 289(6): 1680-1699, 2022 03.
Article in English | MEDLINE | ID: mdl-34719106

ABSTRACT

Coproporpyhrin III is the substrate of coproporphyrin ferrochelatases (CpfCs). These enzymes catalyse the insertion of ferrous iron into the porphyrin ring. This is the penultimate step within the coproporphyrin-dependent haeme biosynthesis pathway. This pathway was discovered in 2015 and is mainly utilised by monoderm bacteria. Prior to this discovery, monoderm bacteria were believed to utilise the protoporphyrin-dependent pathway, analogously to diderm bacteria, where the substrate for the respective ferrochelatase is protoporphyrin IX, which has two propionate groups at positions 6 and 7 and two vinyl groups at positions 2 and 4. In this work, we describe for the first time the interactions of the four-propionate substrate, coproporphyrin III, and the four-propionate product, iron coproporphyrin III (coproheme), with the CpfC from Listeria monocytogenes and pin down differences with respect to the protoporphyrin IX and haeme b complexes in the wild-type (WT) enzyme. We further created seven LmCpfC variants aiming at altering substrate and product coordination. The WT enzyme and all the variants were comparatively studied by spectroscopic, thermodynamic and kinetic means to investigate in detail the H-bonding interactions, which govern complex stability and substrate specificity. We identified a tyrosine residue (Y124 in LmCpfC), coordinating the propionate at position 2, which is conserved in monoderm CpfCs, to be highly important for binding and stabilisation. Importantly, we also describe a tyrosine-serine-threonine triad, which coordinates the propionate at position 4. The study of the triad variants indicates structural differences between the coproporphyrin III and the coproheme complexes. ENZYME: EC 4.99.1.9.


Subject(s)
Coproporphyrins , Ferrochelatase , Binding Sites , Coproporphyrins/chemistry , Ferrochelatase/metabolism , Hydrogen/metabolism , Iron/metabolism , Propionates , Substrate Specificity , Tyrosine
16.
FEBS J ; 289(4): 1105-1117, 2022 02.
Article in English | MEDLINE | ID: mdl-34679218

ABSTRACT

The autosomal dominant striated muscle disease myoglobinopathy is due to the single point mutation His98Tyr in human myoglobin (MB), the heme protein responsible for binding, storage, and controlled release of O2 in striated muscle. In order to understand the molecular basis of this disease, a comprehensive biochemical and biophysical study on wt MB and the variant H98Y has been performed. Although only small differences exist between the active site architectures of the two proteins, the mutant (a) exhibits an increased reactivity toward hydrogen peroxide, (b) exhibits a higher tendency to form high-molecular-weight aggregates, and (c) is more prone to heme bleaching, possibly as a consequence of the observed H2 O2 -induced formation of the Tyr98 radical close to the metal center. These effects add to the impaired oxygen binding capacity and faster heme dissociation of the H98Y variant compared with wt MB. As the above effects result from bond formation/cleavage events occurring at the distal and proximal heme sites, it appears that the molecular determinants of the disease are localized there. These findings set the basis for clarifying the onset of the cascade of chemical events that are responsible for the pathological symptoms of myoglobinopathy.


Subject(s)
Histidine/genetics , Muscular Diseases/genetics , Myoglobin/genetics , Histidine/metabolism , Humans , Hydrogen Peroxide/metabolism , Models, Molecular , Muscular Diseases/metabolism , Muscular Diseases/pathology , Mutation , Myoglobin/metabolism , Protein Conformation
17.
J Inorg Biochem ; 227: 111689, 2022 02.
Article in English | MEDLINE | ID: mdl-34922158

ABSTRACT

Chlorite dismutases (Clds) are heme b containing oxidoreductases able to decompose chlorite to chloride and molecular oxygen. This work analyses the impact of the distal, flexible and catalytic arginine on the binding of anionic angulate ligands like nitrite and the substrate chlorite. Dimeric Cld from Cyanothece sp. PCC7425 was used as a model enzyme. We have investigated wild-type CCld having the distal catalytic R127 hydrogen-bonded to glutamine Q74 and variants with R127 (i) being arrested in a salt-bridge with a glutamate (Q74E), (ii) being fully flexible (Q74V) or (iii) substituted by either alanine (R127A) or lysine (R127K). We present the electronic and spectral signatures of the high-spin ferric proteins and the corresponding low-spin nitrite complexes elucidated by UV-visible, circular dichroism and electron paramagnetic resonance spectroscopies. Furthermore, we demonstrate the impact of the dynamics of R127 on the thermal stability of the respective nitrite adducts and present the X-ray crystal structures of the nitrite complexes of wild-type CCld and the variants Q74V, Q74E and R127A. In addition, the molecular dynamics (MD) and the binding modi of nitrite and chlorite to the ferric wild-type enzyme and the mutant proteins and the interaction of the oxoanions with R127 have been analysed by MD simulations. The findings are discussed with respect to the role(s) of R127 in ligand and chlorite binding and substrate degradation.


Subject(s)
Arginine/chemistry , Bacterial Proteins/chemistry , Chlorides/chemistry , Cyanothece/enzymology , Nitrites/chemistry , Oxidoreductases/chemistry , Protein Multimerization , Catalysis
19.
Redox Biol ; 46: 102090, 2021 10.
Article in English | MEDLINE | ID: mdl-34438259

ABSTRACT

Peroxidasin, a heme peroxidase, has been shown to play a role in cancer progression. mRNA expression has been reported to be upregulated in metastatic melanoma cell lines and connected to the invasive phenotype, but little is known about how peroxidasin acts in cancer cells. We have analyzed peroxidasin protein expression and activity in eight metastatic melanoma cell lines using an ELISA developed with an in-house peroxidasin binding protein. RNAseq data analysis confirmed high peroxidasin mRNA expression in the five cell lines classified as invasive and low expression in the three non-invasive cell lines. Protein levels of peroxidasin were higher in the cell lines with an invasive phenotype. Active peroxidasin was secreted to the cell culture medium, where it accumulated over time, and peroxidasin protein levels in the medium were also much higher in invasive than non-invasive cell lines. The only well-established physiological role of peroxidasin is in the formation of a sulfilimine bond, which cross-links collagen IV in basement membranes via catalyzed oxidation of bromide to hypobromous acid. We found that peroxidasin secreted from melanoma cells formed sulfilimine bonds in uncross-linked collagen IV, confirming peroxidasin activity and hypobromous acid formation. Moreover, 3-bromotyrosine, a stable product of hypobromous acid reacting with tyrosine residues, was detected in invasive melanoma cells, substantiating that their expression of peroxidasin generates hypobromous acid, and showing that it does not exclusively react with collagen IV, but also with other biomolecules.


Subject(s)
Melanoma , Peroxidase , Cell Line , Extracellular Matrix Proteins/genetics , Humans , Melanoma/genetics , Peroxidase/genetics , Peroxidasin
20.
Biophys J ; 120(17): 3600-3614, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34339636

ABSTRACT

Monoderm bacteria utilize coproheme decarboxylases (ChdCs) to generate heme b by a stepwise decarboxylation of two propionate groups of iron coproporphyrin III (coproheme), forming two vinyl groups. This work focuses on actinobacterial ChdC from Corynebacterium diphtheriae (CdChdC) to elucidate the hydrogen peroxide-mediated decarboxylation of coproheme via monovinyl monopropionyl deuteroheme (MMD) to heme b, with the principal aim being to understand the reorientation mechanism of MMD during turnover. Wild-type CdChdC and variants, namely H118A, H118F, and A207E, were studied by resonance Raman and ultraviolet-visible spectroscopy, mass spectrometry, and molecular dynamics simulations. As actinobacterial ChdCs use a histidine (H118) as a distal base, we studied the H118A and H118F variants to elucidate the effect of 1) the elimination of the proton acceptor and 2) steric constraints within the active site. The A207E variant mimics the proximal H-bonding network found in chlorite dismutases. This mutation potentially increases the rigidity of the proximal site and might impair the rotation of the reaction intermediate MMD. We found that both wild-type CdChdC and the variant H118A convert coproheme mainly to heme b upon titration with H2O2. Interestingly, the variant A207E mostly accumulates MMD along with small amounts of heme b, whereas H118F is unable to produce heme b and accumulates only MMD. Together with molecular dynamics simulations, the spectroscopic data provide insight into the reaction mechanism and the mode of reorientation of MMD, i.e., a rotation in the active site versus a release and rebinding.


Subject(s)
Carboxy-Lyases , Corynebacterium diphtheriae , Carboxy-Lyases/metabolism , Corynebacterium diphtheriae/genetics , Corynebacterium diphtheriae/metabolism , Decarboxylation , Heme/metabolism , Hydrogen Peroxide
SELECTION OF CITATIONS
SEARCH DETAIL