Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37894646

ABSTRACT

We derived a theory of biomolecule binding to the surface of Aun clusters and of the Au plane based on the hard soft acid base (HSAB) principle and the free electron metallic surface model. With the use of quantum mechanical calculations, the chemical potential (µ) and the chemical hardness (η) of the biomolecules are estimated. The effect of the gold is introduced via the empirical value of the gold chemical potential (-5.77 eV) as well as by using the expression (modified here) for the chemical hardness (η). The effect of an aqueous environment is introduced by means of the ligand molecular geometry influenced by the PCM field. This theory allows for a fast and low-cost estimation of binding biomolecules to the AuNPs surface. The predicted binding of thiolated genistein and abiraterone to the gold surface is about 20 kcal/mol. The model of the exchange reaction between these biomolecules and citrates on the Au surface corresponds well with the experimental observations for thiolated abiraterone. Moreover, using a model of the place exchange of linear mercaptohydrocarbons on 12-mercaptododecane acid methyl ester bound to the Au surface, the present results reflect the known relation between exchange energy and the size of the reagents.

2.
Int J Pharm ; 583: 119319, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32325244

ABSTRACT

Cancer is one of the leading causes of morbidity and mortality worldwide and nanotechnology has a significant potential to enhance the therapeutic and diagnostic performance of anti-cancer agents. Our work offers a simple and feasible strategy for thiocompound nanomedicines to be used in cancer therapy. Novel gold nanoparticles conjugated with thioabiraterone (AuNP-S-AB) were synthesized and significant new analytical methodologies were developed for their characterization by UV-Vis, TEM, IR, NMR and TGA. Our synthetic approach was based on the ligand exchange of citrates to thioabiraterone on gold nanoparticles. The average particle size of AuNP-S-AB was 14.5 nm with a spherical shape. The identity of thioabiraterone on the gold nanoparticles was proved by NMR and IR spectroscopy. The coverage of the gold nanoparticles with 40.9% (m/m) thioabiraterone was calculated from a TGA analysis. Molecular interactions between the thiol group of thioabiraterone and gold nanoparticles were evaluated through a combined experimental and theoretical study using the density functional theory (DFT). Additionally, an experiment conducted on hepatocytes or human prostate epithelial cells proved that newly synthesized thiol forms of abiraterone, as well as AuNP-S-AB, are more biocompatible than abiraterone. Our proposed idea of delivering abiraterone with our newly designed AuNP-S-AB may constitute a promising and novel prospect in cancer therapy.


Subject(s)
Androstenes/chemistry , Citrates/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Sulfhydryl Compounds/chemistry , Androstenes/administration & dosage , Cell Line , Cell Survival/drug effects , Citrates/administration & dosage , Epithelial Cells/drug effects , Gold/administration & dosage , Humans , Ligands , Liver/cytology , Male , Metal Nanoparticles/administration & dosage , Prostate/cytology , Prostatic Neoplasms/drug therapy , Sulfhydryl Compounds/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL