Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 5473, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615632

ABSTRACT

Potential beneficial effects of lactic acid bacteria on the genital health of cows become of particular interest when considering the importance of an optimal uterine health status for the success of breeding in dairy farming. Therefore, the aim of the present study was to analyse the influence of an intrauterine administration of the Lactobacillus buchneri DSM 32407 on reproductive performance, uterine health status, endometrial mRNA expression of pro-inflammatory factors of cows with signs of subclinical endometritis (SCE). L. buchneri DSM 32407 (n = 56; [LAC]) or a placebo (n = 60; [PLA]) was administered on day 24-30 postpartum. Endometrial cytobrush samples of cows with SCE were taken before the administration and at three following weeks (n = 16 cows each for LAC/SCE and PLA/SCE). A higher proportion of cows of the LAC and LAC/SCE group was pregnant after the first service and median days to conception for cows pregnant on day 200 pp were shorter. Three weeks after the administration, the endometrial mRNA expression of CXCL1/2, CXCL3, CXCR2, IL1B, IL8 and PTPRC was lower in the LAC/SCE group compared with the PLA/SCE group. These findings suggest that the presence of L. buchneri DSM 32407 contributes to a uterine environment that results in a better reproductive performance.


Subject(s)
Endometritis/microbiology , Endometritis/physiopathology , Endometrium/metabolism , Gene Expression Regulation/drug effects , Lactobacillus/physiology , Reproduction , Uterus , Animals , Cattle , Endometritis/genetics , Endometritis/pathology , Female , Inflammation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors
2.
Theriogenology ; 106: 237-246, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29096271

ABSTRACT

The bovine oviduct provides the site for fertilization and early embryonic development. Modifications to this physiological environment, for instance the presence of pathogenic bacterial species, could diminish reproductive success at early stages of pregnancy. The aim of this study was to elucidate the inflammatory responses of bovine oviductal epithelial cells (BOEC) to a pathogenic bacterial species (Trueperella pyogenes) and a potentially pathogenic bacterium (Bacillus pumilus). BOEC from four healthy animals were isolated, cultured in passage 0 (P0) and passaged until P3. Trypan blue staining determined BOEC viability during 24 h co-culture with different multiplicities of infection (MOI) of T. pyogenes (MOI 0.01, 0.05, 0.1 and 1) or B. pumilus (MOI 1 and 10). BOEC remained viable when co-cultured with T. pyogenes at MOI 0.01 and with B. pumilus at MOI 1 and 10. Extracted total RNA from control and bacteria co-cultured samples was subjected to reverse transcription-quantitative polymerase chain reaction (RTq-PCR) to determine mRNA expression of various studied genes. The rate of release of interleukin 8 (IL8) and prostaglandin E2 (PGE2) from BOEC was measured by ELISA after 24 h co-culture with bacteria. RT-qPCR of various selected pro-inflammatory factors revealed similar mRNA expression of pro-inflammatory factors in BOEC co-cultured with T. pyogenes and in the controls. Higher mRNA expression of IL 1A, -1B, tumor necrosis factor alpha and CXC ligand (CXCL) 1/2, -3, -5 and IL8 and PG synthesis enzymes in BOEC co-cultured with B. pumilus was observed. In the presence of B. pumilus a higher amount of IL8 and PGE2 was released from BOEC than from controls. The viability and pro-inflammatory response of P3 BOEC incubated with bacteria was lower than in P0 BOEC. These findings illustrate the pathogenicity of T. pyogenes towards BOEC in detail and the potential role of B. pumilus in generating inflammation in oviductal cells. Culturing conditions influenced the pro-inflammatory responses of BOEC towards bacteria. Therefore, researchers conducting epithelial-bacterial in vitro co-culture should not underestimate the effects of these parameters.


Subject(s)
Actinomycetaceae/pathogenicity , Bacillus pumilus/pathogenicity , Cattle , Epithelial Cells/physiology , Fallopian Tubes/cytology , Inflammation/metabolism , Actinomycetaceae/physiology , Animals , Bacillus pumilus/physiology , Cells, Cultured , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Regulation/physiology , Pregnancy , Prostaglandin-E Synthases/metabolism , Prostaglandins/genetics , Prostaglandins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Theriogenology ; 86(8): 2040-53, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27531713

ABSTRACT

In the uterus, the first pathogen confrontations take place at the luminal endometrial epithelium. Therefore, it is required that these cells have the potential to recognize and respond to a bacterial infection. Antimicrobial peptides (AMP), part of the innate immune system in addition to cytokines, are principal effector molecules of mucosal immunity against pathogens. One important family of AMP that can permeabilize bacterial membranes is the beta-defensin (DEFB) family, which includes the following members: DEFB1, DEFB4A, and DEFB5, lingual AMP, and tracheal AMP. The bactericidal/permeability-increasing protein is also a cationic AMP that results in the death of bacteria. Another AMP family is the S100 calcium-binding protein (S100A) family including the following members: S100A8, S100A9, S100A11, and S100A12. These AMP exert their antimicrobial action through chelation of several ions. The aim of the present study was to evaluate mRNA expression patterns of selected AMP in bovine endometrial cells collected (1) at different stages of the estrous cycle (postovulatory, early-to-mid luteal, late luteal, and pre-ovulatory phase); (2) during the puerperium depending on uterine health status (healthy, subclinical, or clinical endometritis) starting on Day 24 to 30 postpartum for 3 weeks on a weekly basis; and (3) in vitro after co-culturing with Bacillus pumilus at three different multiplicities of infection (MOI 1, 5, and 10) up to 6 hours. The results reported that the mRNA expression of all candidate AMP, except DEFB1, S100A8, and S100A9, was estrous cycle dependent. In particular, around the time of ovulation, the transcription level of most AMP was higher (P < 0.05) compared with the luteal phase. Almost all candidate AMP mRNA expression was dependent on uterine health status, with a higher transcription level (P < 0.05) in inflamed endometrial tissues, especially during the late stage of the puerperium (Day 45-51 postpartum). Members of the DEFB family were nearly unaffected in their mRNA expression in primary endometrial cells co-incubated with B. pumilus. However, S100A8 and S100A9 mRNA contents were higher after 4 and 6 hours of co-incubation with B. pumilus compared with untreated controls. In conclusion, higher mRNA expression of the candidate AMP around ovulation or in inflamed endometrial tissue during the puerperium suggests their crucial role in uterine innate immunity in the defense against invading bacteria.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Cattle/physiology , Endometrium/metabolism , Gene Expression Regulation/physiology , Postpartum Period/metabolism , Animals , Antimicrobial Cationic Peptides/genetics , Bacillus pumilus/physiology , Cells, Cultured , Endometrium/cytology , Epithelial Cells/physiology , Estrous Cycle/physiology , Female , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , S100 Proteins/genetics , S100 Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...