Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Water Sci Technol ; 87(2): 347-353, 2023 Jan.
Article En | MEDLINE | ID: mdl-36706285

The denitrification process has been studied for biodegradation of some emerging contaminants (ECs). For this, anaerobic sludges from different Wastewater Treatment Plants (WTP) have been used; however, the biodegradation capacity can differ due to the contact they have had with various pollutants, given their origin. This work aims to evaluate the kinetic and metabolic capacity of two denitrifying sludges from different WTPs to biodegrade CH3COO--C and NO3--N. Denitrifying tests were carried out in batches with CH3COO--C (30 mg L-1) in a CN-1 relationship of 1.8 with sludge from a WTP of an educational center (WTP-A) and CH3COO--C (50 mg L-1) to a CN-1 of 1.4 with another from the WTP of Atotonilco de Tula, Hidalgo, México (WTP-B). The results showed that the biodegradation rate of CH3COO--C and NO3--N with the WTP-B sludge was 35 and 75% greater, respectively, compared to the WTP-A sludge. Therefore, we suggest that the consumption difference of substrate is attributable to the sludges of WTP, which have been exposed to a high concentration of a great variety of pollutants.


Environmental Pollutants , Sewage , Wastewater , Environmental Pollution , Mexico , Denitrification , Bioreactors
2.
J Food Prot ; 85(1): 112-121, 2022 01 01.
Article En | MEDLINE | ID: mdl-34324685

ABSTRACT: The objectives of this investigation were (i) to isolate bacteria from various foods (dairy products, fruits, and vegetables) and evaluate their probiotic potential and (ii) to select, identify, and characterize the bacterial strain(s) with the highest probiotic potential. From 14 food samples, 117 bacterial strains were isolated; however, only 42 (T1 to T42) had the correct characteristics (gram positive, coccoid, and bacilliform) and were catalase and oxidase negative to be considered presumptive lactic acid bacteria (LAB). The antagonistic activity of the 42 strains was evaluated against Escherichia coli (O157:H7E09), Listeria monocytogenes (ATCC 19115), Staphylococcus aureus (ATCC 25923), and Salmonella enterica serotype Typhimurium (ATCC 14028). The nine strains with the highest antagonistic activity were recovered from the following foods: pulque (T1), sprouted beans (T26), Ranchero cheese (T30, T31, T32, T33, T35, and T36), and Tenate cheese (T40). The inhibition zones on culture and sensitivity plates were 17.0 ± 1.2 to 19.3 ± 2.8 mm in diameter. Based on the antagonistic activity against pathogenic bacteria and resistance to low pH and bile salts, strain T40 had the highest probiotic potential. A 16S rRNA technique was used to identify strain T40 as Lacticaseibacillus paracasei (renamed from Lactobacillus paracasei in April 2020). This strain had no resistance to ampicillin, gentamicin, erythromycin, and tetracycline. The antagonistic activity was evaluated in situ (fresh cheese) against pathogenic bacteria, supporting the probiotic potential of L. paracasei. Isolates of this LAB recovered from Tenate cheese had characteristics of a probiotic microorganism with high potential for use in food technology.


Cheese , Lacticaseibacillus paracasei , Listeria monocytogenes , Probiotics , Cheese/microbiology , RNA, Ribosomal, 16S
3.
J Med Food ; 25(3): 324-328, 2022 Mar.
Article En | MEDLINE | ID: mdl-34941430

The main aim of this study was to determine and compare the antimicrobial effect of hibiscus acid and a commercial 0.12% (w/v) chlorhexidine mouthrinse against Streptococcus mutans, Streptococcus sanguinis, Capnocytophaga gingivalis, and Staphylococcus aureus, and to determine the effect on bacterial cell membrane permeability and the toxicity of hibiscus acid in a mouse model. Hibiscus acid was obtained from acetone extract of Hibiscus sabdariffa calyces. Chlorhexidine (0.12% w/v) mouthrinse was purchased from a local pharmacy. The antimicrobial activity of hibiscus acid and mouthrinse were determined using the gel diffusion technique. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the solutions were determined using the broth dilution method. The effect on bacterial cell membrane permeability of hibiscus acid and mouthrinse was determined by crystal violet assay. The toxicity of hibiscus acid was investigated in a mouse model (registration number: UAEH2019-A1-S-8288). Hibiscus acid and mouthrinse showed antibacterial activity against all oral pathogenic bacteria. However, hibiscus acid showed a lower antibacterial effect compared with chlorhexidine mouthrinse. The MIC and MBC for hibiscus acid were 3 and 5 mg/mL, respectively, and was between 30 and 50 µg/mL for mouthrinse. The crystal violet test results indicate that hibiscus acid and mouthrinse alter the permeability of the bacterial membrane. Finally, hibiscus acid did not show toxicity in mouse studies.


Chlorhexidine , Hibiscus , Animals , Anti-Bacterial Agents/toxicity , Cell Membrane Permeability , Chlorhexidine/pharmacology , Citrates , Mice , Microbial Sensitivity Tests , Mouthwashes/pharmacology , Permeability , Streptococcus mutans
4.
J Food Sci Technol ; 58(3): 952-961, 2021 Mar.
Article En | MEDLINE | ID: mdl-33678878

The aim of this study was to evaluate the effect of acid hydrolysis and succination upon single and a combination of both of them as a dual modification on the morphological, structural, thermal, and pasting profile of the achira starch in order to expand its potential food applications. The surface of achira starch granules was eroded with acid hydrolysis, while the succination resulted in the formation of pores or cavities, having a slight impact on the crystallinity and the gelatinization enthalpy. Succinated starch presented the lowest transition temperatures (To = 60.29 °C, Tp = 65.03 °C and Te = 69.86 °C) compared to other starches in this study. The succination increased the final viscosity (3808 cp) when compared with the native starch (3114 cp), while acid hydrolysis resulted in a decreased value (735 cp). These are desirable properties for its possible use as an additive in bakery industry processes.

5.
Front Microbiol ; 11: 560488, 2020.
Article En | MEDLINE | ID: mdl-33072020

Enterobacter cloacae has emerged as an opportunistic pathogen in healthcare-associated infections. Analysis of the genomic sequences of several E. cloacae strains revealed the presence of genes that code for expression of at least one type VI secretion system (T6SS). Here, we report that E. cloacae strain ATCC 13047 codes for two functional T6SS named T6SS-1 and T6SS-2. T6SS-1 and T6SS-2 were preferentially expressed in tryptic soy broth and tissue culture medium (DMEM), respectively. Mutants in T6SS-1-associated genes clpV1 and hcp1 significantly affected their ability of inter- and intra-bacterial killing indicating that T6SS-1 is required for bacterial competition. In addition, the Hcp effector protein was detected in supernatants of E. cloacae cultures and a functional T6SS-1 was required for the secretion of this protein. A clpV2 mutant was impaired in both biofilm formation and adherence to epithelial cells, supporting the notion that these phenotypes are T6SS-2 dependent. In vivo data strongly suggest that both T6SSs are required for intestinal colonization because single and double mutants in clpV1 and clpV2 genes were defective in gut colonization in mice. We conclude that the two T6SSs are involved in the pathogenesis scheme of E. cloacae with specialized functions in the interaction with other bacteria and with host cells.

6.
Biomedicines ; 8(5)2020 Apr 28.
Article En | MEDLINE | ID: mdl-32354172

Roselle (Hibiscus sabdariffa L.), also known as jamaica in Spanish, is a perennial plant that grows in tropical and subtropical regions, including China, Egypt, Indonesia, Mexico, Nigeria, Thailand, and Saudi Arabia. It has a long history of uses, mainly focused on culinary, botanical, floral, cosmetic, and medicinal uses. The latter being of great impact due to the diuretic, choleretic, analgesic, antitussive, antihypertensive, antimicrobial, immunomodulatory, hepatoprotective, antioxidant, and anti-cancer effects. These therapeutic properties have been attributed to the bioactive compounds of the plant, mainly phenolic acids, flavonoids, anthocyanins, and organic acids (citric, hydroxycitric, hibiscus, tartaric, malic, and ascorbic). Most literature reviews and meta-analyses on the therapeutic potential of Hibiscus sabdariffa L. (Hs) compounds have not adequately addressed the contributions of its organic acids present in the Hs extracts. This review compiles information from published research (in vitro, in vivo, and clinical studies) on demonstrated pharmacological properties of organic acids found in Hs. The intent is to encourage and aid researchers to expand their studies on the pharmacologic and therapeutic effects of Hs to include assessments of the organic acid components.

7.
J Sci Food Agric ; 99(2): 596-605, 2019 Jan 30.
Article En | MEDLINE | ID: mdl-29943479

BACKGROUND: The calyxes of roselle (Hibiscus sabdariffa) are recognized for their high nutraceutical value because they decrease body weight and obesity complications. These effects have been attributed mainly to anthocyanins. However, the calyxes comprise important concentration of flavonoids, phenolic, and organic acids, which could also contribute to these effects. The objective of this work was to determine the effect of the Alma Blanca white roselle variety on obesity and hepatic steatosis in high-fat, high-fructose, diet-fed rats and compare its beneficial effects with the red variety (Criolla), which has been more extensively studied. RESULTS: Aqueous and methanolic extracts were prepared from two roselle varieties, Alma Blanca (white) and Criolla (red). The phytochemical profiles were determined using high-performance liquid chromatography-mass spectrometry (HPLC-MS). Criolla extracts contain principally anthocyanins, phenolic acids, and flavonoids. Anthocyanins were not detected in Alma Blanca. The aqueous extracts of both varieties prevented body-weight gain and decreased adipocytes hyperplasia on rats fed a hypercaloric diet. These extracts also protected against hepatic steatosis. These benefits were associated with hibiscus, dimethyl hibiscus, and hydroxycitric acid. CONCLUSION: These results demonstrated that calyxes from Hibiscus sabdariffa contain compounds that are different from anthocyanins, with potential benefits to health. The organic acids were strongly associated with these beneficial health effects. © 2018 Society of Chemical Industry.


Hibiscus/chemistry , Obesity/drug therapy , Plant Extracts/administration & dosage , Animals , Anthocyanins/administration & dosage , Anthocyanins/chemistry , Chromatography, High Pressure Liquid , Flavonoids/administration & dosage , Flavonoids/chemistry , Flowers/chemistry , Humans , Male , Mass Spectrometry , Obesity/metabolism , Phenols/administration & dosage , Phenols/chemistry , Phytochemicals/administration & dosage , Phytochemicals/chemistry , Plant Extracts/chemistry , Rats , Rats, Wistar
8.
J Food Prot ; 81(11): 1748-1754, 2018 11.
Article En | MEDLINE | ID: mdl-30272999

Cheesemaking is one of the most important industries in Mexico. Among all the Mexican cheeses, fresh cheeses are the most popular and most consumed cheese in Mexico and Latin America. However, in Mexico fresh cheese is frequently made with unpasteurized milk and sold in public markets. This may increase the risk for contamination of dairy products with pathogenic bacteria. The presence of multidrug-resistant pathogenic bacteria in food is an important public health concern. Diarrheagenic Escherichia coli pathotypes (DEPs) are foodborne bacteria. This study investigated the presence of indicator bacteria and multidrug-resistant DEPs in fresh cheeses. A total of 120 fresh cheese samples were collected from public markets in the city of Pachuca, Mexico. The samples were analyzed for presence of fecal coliforms (FC), E. coli, and antibiotic resistant DEPs. FC and E. coli were analyzed using the most-probable-number technique. DEPs were identified using two multiplex PCR methods. Susceptibility to 16 antibiotics was tested for the isolated DEPs strains by the standard assay. The frequency of FC, E. coli, and DEPs in the cheese samples was 50, 40, and 19%, respectively. The identified DEPs included Shiga toxin-producing E. coli (STEC; 8%), enteropathogenic E. coli (EPEC; 6%), and enterotoxigenic E. coli (ETEC; 5%). All isolated strains exhibited resistance to at least five antibiotics. One, one, two, and three STEC strains were resistant to 14, 12, 11, and 10 antibiotics, respectively. One strain of EPEC was resistant to 11 antibiotics, three EPEC strains to 9, and one strain to 7. One, one, and two strains of ETEC were resistant to 10, 8, and 7 antibiotics, respectively. The results of the present study indicate that fresh cheeses made with unpasteurized milk could be a risk for consumers, both for native people and visitors to Mexico.


Cheese , Drug Resistance, Multiple, Bacterial , Enteropathogenic Escherichia coli , Enterotoxigenic Escherichia coli , Food Contamination/analysis , Shiga-Toxigenic Escherichia coli , Cheese/microbiology , Enteropathogenic Escherichia coli/drug effects , Enteropathogenic Escherichia coli/isolation & purification , Enterotoxigenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/isolation & purification , Mexico , Shiga-Toxigenic Escherichia coli/drug effects , Shiga-Toxigenic Escherichia coli/isolation & purification
9.
Foods ; 7(8)2018 Aug 01.
Article En | MEDLINE | ID: mdl-30071574

Mesquite (Prosopis laevigata) is a legume tree widely distributed in Aridoamerica. The mature fruit of this legume is a pod, which is currently underutilized and has high nutritional potential. In the present work, mesquite seed flour is described in terms of its nutritional value, as well as the effect of extrusion cooking on its bioactive components. Mesquite seed flour is rich in fiber (7.73 g/100 g) and protein (36.51 g/100 g), with valine as the only limiting amino acid. Total phenolic compound contents in raw and extruded seed flour were 6.68 and 6.46 mg of gallic acid equivalents/g (mg GAE/g), respectively. 2-2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity values in raw and extruded seed flour were 9.11 and 9.32 mg of ascorbic acid equivalent/g (mg AAE/g), respectively. The absorbance at 290 nm, as an indicator of generation of Maillard reaction product (MRP), was the same for raw and extruded samples. Apigenin was the only flavonoid found in mesquite seed flour (41.6 mg/kg) and was stable in the extrusion process. The water absorption index (WAI) and water solubility index (WSI) were changed significantly during extrusion. The expansion of mesquite seed flour extrudates was null due to the high protein and fiber content in the sample. Extrusion cooking of mesquite seed flour is a useful form of technology for the industrialization of this underutilized and nutritionally valuable legume.

10.
J Food Prot ; 81(5): 743-753, 2018 05.
Article En | MEDLINE | ID: mdl-29620488

The behavior of foodborne bacteria on whole and cut mangoes and the antibacterial effect of Hibiscus sabdariffa calyx extracts and chemical sanitizers against foodborne bacteria on contaminated mangoes were investigated. Mangoes var. Ataulfo and Kent were used in the study. Mangoes were inoculated with Listeria monocytogenes, Shigella flexneri, Salmonella Typhimurium, Salmonella Typhi, Salmonella Montevideo, Escherichia coli strains (O157:H7, non-O157:H7 Shiga toxin-producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative). The antibacterial effect of five roselle calyx extracts (water, ethanol, methanol, acetone, and ethyl acetate), sodium hypochlorite, colloidal silver, and acetic acid against foodborne bacteria were evaluated on contaminated mangoes. The dry extracts obtained with ethanol, methanol, acetone, and ethyl acetate were analyzed by nuclear magnetic resonance spectroscopy to determine solvent residues. Separately, contaminated whole mangoes were immersed in five hibiscus extracts and in sanitizers for 5 min. All foodborne bacteria attached to mangoes. After 20 days at 25 ± 2°C, all foodborne bacterial strains on whole Ataulfo mangoes had decreased by approximately 2.5 log, and on Kent mangoes by approximately 2 log; at 3 ± 2°C, they had decreased to approximately 1.9 and 1.5 log, respectively, on Ataulfo and Kent. All foodborne bacterial strains grew on cut mangoes at 25 ± 2°C; however, at 3 ± 2°C, bacterial growth was inhibited. Residual solvents were not detected in any of the dry extracts by nuclear magnetic resonance. Acetonic, ethanolic, and methanolic roselle calyx extracts caused a greater reduction in concentration (2 to 2.6 log CFU/g) of all foodborne bacteria on contaminated whole mangoes than the sodium hypochlorite, colloidal silver, and acetic acid. Dry roselle calyx extracts may be a potentially useful addition to disinfection procedures of mangoes.


Hibiscus , Mangifera , Microbiota/drug effects , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Colony Count, Microbial , Escherichia coli O157/drug effects , Food Contamination/prevention & control , Food Microbiology , Hibiscus/chemistry , Listeria monocytogenes/drug effects , Mangifera/microbiology
11.
J Food Prot ; 81(2): 209-217, 2018 02.
Article En | MEDLINE | ID: mdl-29320233

Leafy greens have been associated with foodborne disease outbreaks in different countries. To decrease microbial contamination of leafy greens, chemical agents are commonly used; however, a number of studies have shown these agents to have limited antimicrobial effect against pathogenic bacteria on vegetables. The objective of this study was to compare the antibacterial effect of Hibiscus sabdariffa calyx extracts (water, methanol, acetone, and ethyl acetate), sodium hypochlorite, acetic acid, and colloidal silver against foodborne bacteria on leafy greens. Thirteen foodborne bacteria were used in the study: Listeria monocytogenes, Shigella flexneri, Salmonella serotypes Typhimurium Typhi, and Montevideo, Staphylococcus aureus, Escherichia coli O157:H7, five E. coli pathotypes (Shiga toxin-producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative), and Vibrio cholerae O1. Each foodborne bacterium was separately inoculated on romaine lettuce, spinach, and coriander leaves. Separately, contaminated leafy greens were immersed in four hibiscus extracts and in sanitizers for 5 min. Next, green leaves were washed with sterile tap water. Separately, each green leaf was placed in a bag that contained 0.1% sterile peptone water and was rubbed for 2 min. Counts were done by plate count using appropriate dilutions (in sterile peptone water) of the bacterial suspensions spread on Trypticase soy agar plates and incubated at 35 ± 2°C for 48 h. Statistically significant differences ( P < 0.05) were calculated with an analysis of variance and Duncan's test. All 13 foodborne bacteria attached to leafy greens. Roselle calyx extracts caused a significantly greater reduction ( P < 0.05) in concentration of all foodborne bacteria on contaminated romaine lettuce, spinach, and coriander than did the sodium hypochlorite, colloidal silver, and acetic acid. Dry roselle calyx extracts may potentially be a useful addition to disinfection procedures for romaine lettuce, spinach, and coriander.


Anti-Bacterial Agents/pharmacology , Food Microbiology , Hibiscus/chemistry , Plant Extracts/pharmacology , Vegetables/microbiology , Humans , Plant Leaves/drug effects , Plant Leaves/microbiology , Sodium Hypochlorite/pharmacology , Vegetables/drug effects
12.
J Sci Food Agric ; 97(12): 4117-4123, 2017 Sep.
Article En | MEDLINE | ID: mdl-28220491

BACKGROUND: The presence of multidrug-resistant Salmonella in vegetables is a significant public health concern. Nopalito is a cactaceous that is commonly consumed either raw or cooked in Mexico and other countries. The presence of antibiotic-resistant Salmonella strains on raw whole nopalitos (RWN, without prickles), raw nopalitos cut into squares (RNCS) and in cooked nopalitos salads (CNS) samples was determined. In addition, the behavior of multidrug-resistant Salmonella isolates on RWN, RNCS and CNS at 25° ± 2 °C and 3° ± 2 °C was investigated. RESULTS: One hundred samples of RWN, 100 of RNCS and 100 more of CNS were collected from public markets. Salmonella strains were isolated and identified in 30, 30 and 10% of the samples, respectively. Seventy multidrug-resistant Salmonella strains were isolated from all the nopalitos samples. Multidrug-resistant Salmonella isolates survived at least 15 days on RWN at 25° ± 2 °C or 3° ± 2 °C. Multidrug-resistant Salmonella isolates grew in the RNCS and CNS samples at 25° ± 2 °C. However, at 3° ± 2 °C the bacterial growth was inhibited. CONCLUSION: This is the first report about multidrug-resistant Salmonella isolation from raw nopalitos and nopalitos salads. Nopalitos from markets are very likely to be an important factor contributing to the endemicity of multidrug-resistant Salmonella-related gastroenteritis in Mexico. © 2017 Society of Chemical Industry.


Drug Resistance, Multiple, Bacterial , Food Contamination/analysis , Opuntia/microbiology , Salmonella/drug effects , Vegetables/microbiology , Anti-Bacterial Agents/pharmacology , Food Microbiology , Mexico , Salmonella/classification , Salmonella/genetics , Salmonella/isolation & purification
13.
J Food Prot ; 80(3): 406-413, 2017 03.
Article En | MEDLINE | ID: mdl-28199144

Chili peppers are a very important crop in Mexico. However, these peppers have been associated with Salmonella infection outbreaks in the United States, and Salmonella and diarrheagenic Escherichia coli pathotypes have been isolated from jalapeño and serrano peppers in Mexico. To decrease microbial contamination of fruits and vegetables, chemical agents are commonly used; however, chemical agents used to eliminate pathogenic bacteria on vegetables have a limited antimicrobial effect. Roselle ( Hibiscus sabdariffa ) calyces have been reported to have an antimicrobial effect on pathogenic bacteria. In the present study, the antibacterial effect of four roselle calyx extracts (water, methanol, acetone, and ethyl acetate), sodium hypochlorite, colloidal silver, and acetic acid against foodborne bacteria was evaluated on contaminated jalapeño and serrano peppers. The 13 types of foodborne bacteria evaluated were Listeria monocytogenes , Shigella flexneri , Salmonella Typhimurium, Salmonella Typhi, Salmonella Montevideo, Staphylococcus aureus , E. coli O157:H7, five E. coli pathotypes (Shiga toxin producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative), and Vibrio cholerae O1. All 13 types attached to both pepper types, with no significant differences in attachment between jalapeño and serrano peppers. Roselle calyx extract treatment resulted in a greater reduction in levels of all foodborne bacteria than did treatment with sodium hypochlorite, colloidal silver, and acetic acid on both pepper types. Roselle calyx extracts may be a useful for disinfection of chili peppers in the field, processing plants, restaurants, and homes.


Anti-Bacterial Agents , Food Contamination/prevention & control , Sodium Hypochlorite , Acetic Acid , Escherichia coli O157 , Hibiscus , Mexico , Silver , Staphylococcus aureus
14.
J Food Sci Technol ; 53(10): 3787-3794, 2016 Oct.
Article En | MEDLINE | ID: mdl-28017994

Most of antimicrobial peptides interact with food components decreasing their activity, which limit their successful incorporation into packaging material, functional foods and edible films. The aim of this work was to develop a nisin carrier. Nanofibers of amaranth protein and pullulan (50:50) loaded with nisin were obtained by electrospinning. The nanofibers morphology was determined by scanning electron microscopy and fluorescent microscopy. The molecular interactions were characterized by infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. The nisin loading efficiency as well as the antimicrobial activity against Leuconostoc mesenteroides were evaluated. The micrographs of the obtained materials exhibited smooth and continuous fibers with no defects characterized by diameters between 124 and 173 nm. The FTIR analysis showed intermolecular interactions mainly by hydrogen bonding. The electrospinning process improved the thermal properties of the polymeric mixture displacing the Tm peak to higher temperatures and increasing crystallinity. The antimicrobial activity of nisin in broth and agar against L. mesenteroides was maintained after incorporation into fibers. The results presented an outlook for the potential use of protein amaranth nanofibers when incorporating antimicrobials as a food preservation strategy.

15.
Food Microbiol ; 59: 97-103, 2016 Oct.
Article En | MEDLINE | ID: mdl-27375249

The prevalence and behavior of multidrug-resistant diarrheagenic Escherichia coli pathotypes on coriander was determined. One hundred coriander samples were collected from markets. Generic E. coli were determined using the most probable number procedure. Diarrheagenic E. coli pathotypes (DEPs) were identified using two multiplex polymerase chain reaction procedures. Susceptibility to sixteen antibiotics was tested for the isolated DEPs strains by standard test. The behavior of multidrug-resistant DEPs isolated from coriander was determined on coriander leaves and chopped coriander at 25°± 2 °C and 3°± 2 °C. Generic E. coli and DEPs were identified, respectively, in 43 and 7% of samples. Nine DEPs strains were isolated from positive coriander samples. The identified DEPs included Shiga toxin-producing E. coli (STEC, 4%) enterotoxigenic E. coli (ETEC, 2%) and enteropathogenic E. coli (EPEC, 1%). All isolated DEPs strains exhibited multi-resistance to antibiotics. On inoculated coriander leaves stored at 25°± 2 °C or 3°± 2 °C, no growth was observed for multidrug-resistant DEPs strains. However, multidrug-resistant DEPs strains grew in chopped coriander: after 24 h at 25° ± 2 °C, DEPs strains had grown to approximately 3 log CFU/g. However, at 3°± 2 °C the bacterial growth was inhibited. To the best of our knowledge, this is the first report of the presence and behavior of multidrug-resistant STEC, ETEC and EPEC on coriander and chopped coriander.


Coriandrum/microbiology , Enteropathogenic Escherichia coli/isolation & purification , Enterotoxigenic Escherichia coli/isolation & purification , Food Contamination/analysis , Food Microbiology , Shiga-Toxigenic Escherichia coli/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacterial Load , Drug Resistance, Multiple, Bacterial , Enteropathogenic Escherichia coli/drug effects , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/growth & development , Enterotoxigenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/growth & development , Mexico , Polymerase Chain Reaction , Shiga-Toxigenic Escherichia coli/drug effects , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/growth & development , Temperature
16.
Molecules ; 21(7)2016 Jul 21.
Article En | MEDLINE | ID: mdl-27455210

Blackberry processing generates up to 20% of residues composed mainly of peel, seeds and pulp that are abundant in flavonoids. The objective of this study was to optimize the ultrasound conditions, in a closed system, for antioxidants extraction, using the response surface methodology. Blackberry (Rubus fructicosus) residues were analyzed for total phenolics, total anthocyanins, and antioxidant activity by ABTS and DPPH. The selected independent variables were ultrasound amplitude (X1: 80%-90%) and extraction time (X2: 10-15 min), and results were compared with conventional extraction methods. The optimal conditions for antioxidants extraction were 91% amplitude for 15 min. The results for total phenolic content and anthocyanins and antioxidant activity by ABTS and DPPH were of 1201.23 mg gallic acid equivalent (GAE)/100 g dry weight basis (dw); 379.12 mg/100 g·dw; 6318.98 µmol Trolox equivalent (TE)/100 g·dw and 9617.22 µmol TE/100 g·dw, respectively. Compared to solvent extraction methods (water and ethanol), ultrasound achieved higher extraction of all compounds except for anthocyanins. The results obtained demonstrated that ultrasound is an alternative to improve extraction yield of antioxidants from fruit residues such as blackberry.


Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rubus/chemistry , Ultrasonic Waves , Anthocyanins/chemistry , Antioxidants/pharmacology , Chemical Fractionation/methods , Phenols/chemistry , Plant Extracts/pharmacology , Reproducibility of Results
17.
Foodborne Pathog Dis ; 13(5): 269-74, 2016 05.
Article En | MEDLINE | ID: mdl-26954710

The presence of multidrug-resistant pathogenic bacteria in food is a significant public health concern. Diarrheagenic Escherichia coli pathotypes (DEPs) are foodborne bacteria. In Mexico, DEPs have been associated with diarrheal illness. There is no information about the presence of multidrug-resistant DEPs on fresh vegetables and in cooked vegetable salads in Mexico. "Nopalitos" (Opuntia ficus-indica L.) is a Cactacea extensively used as a fresh green vegetable throughout Mexico. The presence of generic E. coli and multidrug-resistant DEPs on raw whole and cut nopalitos and in nopalitos salad samples was determined. One hundred raw whole nopalitos (without prickles) samples, 100 raw nopalitos cut into small square samples, and 100 cooked nopalitos salad samples were collected from markets. Generic E. coli was determined using the most probable number procedures. DEPs were identified using two multiplex polymerase chain reaction procedures. Susceptibility to 16 antibiotics was tested for the isolated DEP strains by standard test. Of the 100 whole nopalitos samples, 100 cut nopalitos samples, and 100 nopalitos salad samples, generic E. coli and DEPs were identified, respectively, in 80% and 10%, 74% and 10%, and 64% and 8%. Eighty-two DEP strains were isolated from positive nopalitos samples. The identified DEPs included Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC). All isolated strains exhibited resistance to at least six antibiotics. To the best of our knowledge, this is the first report of the presence of multidrug-resistant and antibiotic resistance profiles of STEC, ETEC, and EPEC on raw nopalitos and in nopalitos salads in Mexico.


Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Food Microbiology , Vegetables/microbiology , Bacterial Load , Drug Resistance, Multiple, Bacterial , Enteropathogenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/drug effects , Humans , Mexico , Shiga-Toxigenic Escherichia coli/drug effects
18.
J Food Sci Technol ; 52(10): 6607-14, 2015 Oct.
Article En | MEDLINE | ID: mdl-26396407

A mixture of orange vesicle flour, commercial nixtamalized corn flour and potato starch was extruded using a Brabender Laboratory single screw extruder (2:1 L/D). The resulting pellets were expanded by microwaves. Expansion index, bulk density, penetration force, carotenoid content, and dietary fiber were measured for this third-generation snack and optimum production conditions were estimated. Response surface methodology was applied using a central composite rotatable experimental design to evaluate the effect of moisture content and extrusion temperature. Temperature mainly affected the expansion index, bulk density and penetration force, while carotenoids content was affected by moisture content. Surface overlap was used to identify optimum processing conditions: temperature: 128-130 °C; moisture content: 22-24 %. Insoluble dietary fiber decreased and soluble dietary fiber increased after extrusion.

19.
J Food Sci Technol ; 52(7): 4483-90, 2015 Jul.
Article En | MEDLINE | ID: mdl-26139915

A partial characterization was done of ebony (Pithecellobium flexicaule) seed physical properties, and how defatting affected some functional properties of ebony seed meal. Average seed dimensions were 13.02 mm length, 8.78 mm width and 9.65 mm thickness. Geometric diameter was 10.76 mm, volume was 530 mm(3), surface area was 364.33 mm(2), sphericity was 83.26 % and aspect ratio was 68.24 %. Thousand-seed weight was 0.70 Kg, of which 0.42 Kg (60 %) represented the kernel. Defatted ebony seed meal differed from whole meal in all measured parameters, particularly in its protein (44.72 g/100 g) and carbohydrates (44.12 g/100 g) proportions. The defatted meal had higher water absorption capacity (1.28 g/g sample), water solubility capacity (26.06 %), oil absorption capacity (2.04 g/g sample), emulsifying capacity (53.78 %) and gelling capacity (8 % w/v) than the whole meal. Ebony seed physical properties may prove useful in designing post-harvest processing equipment and in quality control. The high protein content of defatted ebony seed meal suggests its use as a natural alternative ingredient in numerous food industry applications.

20.
J Food Prot ; 78(3): 609-14, 2015 Mar.
Article En | MEDLINE | ID: mdl-25719889

Data on the presence of diarrheagenic Escherichia coli pathotypes (DEPs) in alfalfa sprouts and correlations between the presence of coliform bacteria (CB), fecal coliforms (FC), E. coli, DEPs, and Salmonella in alfalfa sprouts are not available. The presence of and correlations between CB, FC, E. coli, DEPs, and Salmonella in alfalfa sprouts were determined. One hundred sprout samples were collected from retail markets in Pachuca, Hidalgo State, Mexico. The presence of indicator bacteria and Salmonella was determined using conventional culture procedures. DEPs were identified using two multiplex PCR procedures. One hundred percent of samples were positive for CB, 90% for FC, 84% for E. coli, 10% for DEPs, and 4% for Salmonella. The populations of CB ranged from 6.2 up to 8.6 log CFU/g. The FC and E. coli concentrations were between , 3 and 1,100 most probable number (MPN)/g. The DEPs identified included enterotoxigenic E. coli (ETEC; 2%), enteropathogenic E. coli (EPEC; 3%), and Shiga toxin-producing E. coli (STEC; 5%). No E. coli O157:H7 strains were detected in any STEC-positive samples. In samples positive for DEPs, the concentrations ranged from 210 to 240 MPN/g for ETEC, 28 to 1,100 MPN/g for EPEC, and 3.6 to 460 MPN/g for STEC. The Salmonella isolates identified included Salmonella enterica serotype Typhimurium in three samples and Salmonella enterica serotype Enteritidis in one. STEC and Salmonella Typhimurium were identified together in one sample. Positive correlations were observed between FC and E. coli, between FC and DEPs, and between E. coli and DEPs. Negative correlations occurred between CB and DEPs and between CB and Salmonella. Neither FC nor E. coli correlated with Salmonella in the sprout samples. To our knowledge, this is the first report of ETEC, EPEC, and STEC isolated from alfalfa sprouts and the first report of correlations between different indicator groups versus DEPs and Salmonella.


Enteropathogenic Escherichia coli/isolation & purification , Enterotoxigenic Escherichia coli/isolation & purification , Escherichia coli O157/isolation & purification , Medicago sativa/microbiology , Salmonella enteritidis/isolation & purification , Salmonella typhimurium/isolation & purification , Colony Count, Microbial , Food Contamination/analysis , Food Microbiology , Mexico , Polymerase Chain Reaction
...