Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 75
1.
Clin Rheumatol ; 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842744

Up to 30% of patients with celiac disease (CD) suffer from concurrent autoimmune disease, compared to 3% of the general population. The association between CD and the current clinical phenotypes of inflammatory myopathies (IIM) patients has not been thoroughly addressed. Assess the CD features among patients with IIM and their relationship with the clinical phenotype and the myositis specific (MSA) and associated antibodies (MAA). For this cross-sectional study, we recruited 99 adult patients classified as IIM from a tertiary center in Mexico. We assessed serum MSA, MAA, and CD-associated autoantibodies (IgA anti-tissue transglutaminase (tTG) and both IgA and IgG anti-deaminated gliadin peptide (DGP)). Patients with highly suggestive serology for CD were then tested for IgG anti-endomysium antibodies, and a duodenal biopsy was performed. 70.7% of patients were positive for at least one antibody. Nine duodenal biopsies were taken, revealing findings compatible with celiac disease in two cases. Subjects with anti-MDA5 antibodies were more likely to have positive anti-tTG IgA antibodies (OR 6.76, 95% CI 1.85-24.62, P = 0.013) and suggestive CD serology (OR 6.41, 95% CI 1.62-25.29, P = 0.009). Patients with anti-Mi2 antibodies were more likely to have positive anti-DGP IgG antibodies (OR 3.35, 95% CI 1.12-9.96, P = 0.039), while positivity for these autoantibodies was less frequent in patients with anti-NXP2 antibodies (OR 0.22, 95% CI 0.06-0.80, P = 0.035). There is a higher prevalence of serologic and definite CD in patients with IIM compared to the general population. Identifying this subgroup of patients may have prognostic and therapeutic implications. Key points • The study estimated a serological celiac disease (CD) prevalence of 70.7% in patients with idiopathic inflammatory myopathies (IIM) and a biopsy-confirmed prevalence of 2%, suggesting that IIM patients should be considered a high-risk population for CD. • We identified a significant association between serological CD and the presence of anti-MDA5 and anti-Mi2 antibodies, suggesting a potential justification for celiac disease screening in this specific subgroup of patients. • The impact of gluten-free diets on IIM patients with serological markers of CD remains untested and warrants further investigation through prospective, randomized studies.

2.
Front Immunol ; 15: 1335963, 2024.
Article En | MEDLINE | ID: mdl-38601158

Introduction: Serine proteases play a critical role during SARS-CoV-2 infection. Therefore, polymorphisms of transmembrane protease serine 2 (TMPRSS2) and serpine family E member 1 (SERPINE1) could help to elucidate the contribution of variability to COVID-19 outcomes. Methods: To evaluate the genetic variants of the genes previously associated with COVID-19 outcomes, we performed a cross-sectional study in which 1536 SARS-CoV-2-positive participants were enrolled. TMPRSS2 (rs2070788, rs75603675, rs12329760) and SERPINE1 (rs2227631, rs2227667, rs2070682, rs2227692) were genotyped using the Open Array Platform. The association of polymorphisms with disease outcomes was determined by logistic regression analysis adjusted for covariates (age, sex, hypertension, type 2 diabetes, and obesity). Results: According to our codominant model, the GA genotype of rs2227667 (OR=0.55; 95% CI = 0.36-0.84; p=0.006) and the AG genotype of rs2227667 (OR=0.59; 95% CI = 0.38-0.91; p=0.02) of SERPINE1 played a protective role against disease. However, the rs2227692 T allele and TT genotype SERPINE1 (OR=1.45; 95% CI = 1.11-1.91; p=0.006; OR=2.08; 95% CI = 1.22-3.57; p=0.007; respectively) were associated with a decreased risk of death. Similarly, the rs75603675 AA genotype TMPRSS2 had an OR of 1.97 (95% CI = 1.07-3.6; p=0.03) for deceased patients. Finally, the rs2227692 T allele SERPINE1 was associated with increased D-dimer levels (OR=1.24; 95% CI = 1.03-1.48; p=0.02). Discussion: Our data suggest that the rs75603675 TMPRSS2 and rs2227692 SERPINE1 polymorphisms are associated with a poor outcome. Additionally, rs2227692 SERPINE1 could participate in hypercoagulable conditions in critical COVID-19 patients, and this genetic variant could contribute to the identification of new pharmacological targets and treatment strategies to block the inhibition of TMPRSS2 entry into SARS-CoV-2.


COVID-19 , Diabetes Mellitus, Type 2 , Humans , COVID-19/genetics , Serine Proteases , SARS-CoV-2 , Cross-Sectional Studies
3.
J Leukoc Biol ; 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38554062

Idiopathic inflammatory myopathies are a heterogeneous group of rare autoimmune disorders characterized by progressive muscle weakness and the histopathologic findings of inflammatory infiltrates in muscle tissue. Although their pathogenesis remains indefinite, the association of autoantibodies with clinical manifestations and the evidence of high effectiveness of depleting therapies suggest that B cells could be implicated. Therefore, we explored the landscape of peripheral B cells in this disease by multiparametric flow cytometry, finding significant numerical decreases in memory and double negative subsets, as well as an expansion of the naïve compartment relative to healthy controls, that contribute to defining disease-associated B cell subset signatures and correlating with different clinical features of patients. Additionally, we determined the potential value of these subsets as diagnostic biomarkers, thus positioning B cells as neglected key elements possibly participating in idiopathic inflammatory myopathies onset or development.

4.
Clin Rheumatol ; 43(1): 501-509, 2024 Jan.
Article En | MEDLINE | ID: mdl-37964076

OBJECTIVE: To address the relationship between systemic lupus erythematosus (SLE) disease activity and the functional parameters of the innate immunity. METHODS: We evaluated a cohort of 26 adult SLE patients and 10 sex and age-paired healthy donors. When the patients had a disease flare (baseline) and when they achieve clinical response (follow-up), we assessed the systemic lupus erythematosus disease activity index 2 K (SLEDAI 2 K) and the following parameters with flow cytometry and confocal microscopy: monocyte subsets, their expression of TLR2, phagocytic monocytes and neutrophils using the pHrodo Red E. coli BioParticles, the respiratory burst with 123-dihydrorhodamine in neutrophils, and the spontaneous and lipopolysaccharide (LPS)-induced production of neutrophil extracellular traps (NETs). We used the Wilcoxon test to compare the paired medians with interquartile range (IQR) and the Mann-Whitney U test for independent medians. To assess the effect of prednisone and SLEDAI 2 K on the mentioned parameters, we applied a generalized mixed linear model. RESULTS: Twenty-three patients (88.4%) were women. The SLEDAI 2 K was higher at baseline 8 (6-14) in comparison to that at follow-up (6 (4-8), P = 0.028). At baseline, SLE patients had a decreased percentage of intermediate monocytes, a higher expression of TLR2 in total monocytes, increased phagocytosis in monocytes and neutrophils, a decreased respiratory burst intensity, and an increased production of NETs. In the mix model, the SLEDAI 2 K was the main factor influencing these functional innate immune parameters. CONCLUSION: Disease activity regulates the innate immune function in SLE which may contribute to the clinical features and infection predisposition. Key points • This is the first cohort study addressing the effect of disease activity and prednisone use on the innate immune function of lupus patients. • Our results show that the disease activity is a key regulator of the respiratory burst, phagocytosis, and the production of neutrophil extracellular traps. • Also, we observed a differential proportion of monocyte subsets according to SLE disease activity. • We consider that our manuscript contributes to the evidence addressing the intrinsic immune abnormalities of patients with SLE regardless of the use of immunosuppressants and set the bases for new research work considering the disease activity as an element to decide the prescription and duration of antibiotic prophylaxis in SLE patients, which is of interest to all rheumatologists.


Lupus Erythematosus, Systemic , Toll-Like Receptor 2 , Adult , Humans , Female , Male , Prednisone/therapeutic use , Cohort Studies , Escherichia coli , Lupus Erythematosus, Systemic/drug therapy , Immunity
5.
Brain Behav Immun ; 111: 270-276, 2023 07.
Article En | MEDLINE | ID: mdl-37149107

Studies of cellular and cytokine profiles have contributed to the inflammation hypothesis of schizophrenia; however, precise markers of inflammatory dysfunction remain elusive. A number of proton magnetic resonance spectroscopy (1H-MRS) studies in patients with first-episode psychosis (FEP) have shown higher brain levels of metabolites such as glutamate, myo-inositol (mI) and choline-containing compounds (tCho), suggesting neuroinflammation. Here, we present peripheral inflammatory profiles in antipsychotic-naive FEP patients and age-and-sex matched healthy controls, as well as cortical glutamate, mI and tCho levels using 1H-MRS. Inflammatory profiles were analyzed using cytokine production by peripheral blood mononuclear cells, that were either spontaneous or stimulated, in 48 FEP patients and 23 controls. 1H-MRS of the medial prefrontal cortex was obtained in 29 FEP patients and 18 controls. Finally, 16 FEP patients were rescanned after 4 weeks of treatment (open-label) with Risperidone. FEP patients showed a higher proportion of proinflammatory Th1/Th17 subset, and an increased spontaneous production of Interleukin (IL)-6, IL-2 and IL-4 compared with the control group. Results obtained from 1H-MRS showed no significant difference in either glutamate, mI or tCho between FEP and control groups. At baseline, CD8% showed a negative correlation with glutamate in FEP patients; after 4 weeks of risperidone treatment, the FEP group exhibited a decrease in glutamate levels which positively correlated with CD4 + T cells. Nevertheless, these correlations did not survive correction for multiple comparisons. FEP patients show evidence of immune dysregulation, affecting both the innate and adaptive immune response, with a predominantly Th2 signature. These findings, along with the changes produced by antipsychotic treatment, could be associated with both systemic and central inflammatory processes in schizophrenia.


Antipsychotic Agents , Neurochemistry , Psychotic Disorders , Humans , Risperidone/therapeutic use , Antipsychotic Agents/therapeutic use , Leukocytes, Mononuclear/metabolism , Glutamic Acid/metabolism , Interleukin-6 , Inflammation/complications
6.
Front Immunol ; 14: 1080154, 2023.
Article En | MEDLINE | ID: mdl-36911711

Introduction: Immunoglobulin A (IgA) is the main antibody isotype in body fluids such as tears, intestinal mucous, colostrum, and saliva. There are two subtypes of IgA in humans: IgA1, mainly present in blood and mucosal sites, and IgA2, preferentially expressed in mucosal sites like the colon. In clinical practice, immunoglobulins are typically measured in venous or capillary blood; however, alternative samples, including saliva, are now being considered, given their non-invasive and easy collection nature. Several autoimmune diseases have been related to diverse abnormalities in oral mucosal immunity, such as rheumatoid arthritis, Sjogren's syndrome, and systemic lupus erythematosus (SLE). Methods: We decided to evaluate the levels of both IgA subtypes in the saliva of SLE patients. A light chain capture-based ELISA measured specific IgA1 and IgA2 levels in a cohort of SLE patients compared with age and gender-matched healthy volunteers. Results: Surprisingly, our results indicated that in the saliva of SLE patients, total IgA and IgA1 subtype were significantly elevated; we also found that salivary IgA levels, particularly IgA2, positively correlate with anti-dsDNA IgG antibody titers. Strikingly, we also detected the presence of salivary anti-nucleosome IgA antibodies in SLE patients, a feature not previously reported elsewhere. Conclusions: According to our results and upon necessary validation, IgA characterization in saliva could represent a potentially helpful tool in the clinical care of SLE patients with the advantage of being a more straightforward, faster, and safer method than manipulating blood samples.


Immunoglobulin A, Secretory , Lupus Erythematosus, Systemic , Humans , Immunoglobulin A , Immunoglobulin G , Mouth Mucosa , Biomarkers
7.
Front Immunol ; 14: 1113214, 2023.
Article En | MEDLINE | ID: mdl-36923415

Skeletal muscle is one of the most abundant tissues of the human body and is responsible for the generation of movement. Muscle injuries can lead to severe disability. Skeletal muscle is characterized by an important regeneration capacity, which is possible due to the interaction between the myoblasts and immune cells. Neutrophils are fundamental as inducers of muscle damage and as promoters of the initial inflammatory response which eventually allows the muscle repair. The main functions of the neutrophils are phagocytosis, respiratory burst, degranulation, and the production of neutrophil extracellular traps (NETs). An overactivation of neutrophils after muscle injuries may lead to an expansion of the initial damage and can hamper the successful muscle repair. The importance of neutrophils as inducers of muscle damage extends beyond acute muscle injury and recently, neutrophils have become more relevant as part of the immunopathogenesis of chronic muscle diseases like idiopathic inflammatory myopathies (IIM). This heterogeneous group of systemic autoimmune diseases is characterized by the presence of muscle inflammation with a variable amount of extramuscular features. In IIM, neutrophils have been found to have a role as biomarkers of disease activity, and their expansion in peripheral blood is related to certain clinical features like interstitial lung disease (ILD) and cancer. On the other hand, low density granulocytes (LDG) are a distinctive subtype of neutrophils characterized by an enhanced production of NETs. These cells along with the NETs have also been related to disease activity and certain clinical features like ILD, vasculopathy, calcinosis, dermatosis, and cutaneous ulcers. The role of NETs in the immunopathogenesis of IIM is supported by an enhanced production and deficient degradation of NETs that have been observed in patients with dermatomyositis and anti-synthetase syndrome. Finally, new interest has arisen in the study of other phenotypes of LDG with a phenotype corresponding to myeloid-derived suppressor cells, which were also found to be expanded in patients with IIM and were related to disease activity. In this review, we discuss the role of neutrophils as both orchestrators of muscle repair and inducers of muscle damage, focusing on the immunopathogenesis of IIM.


Dermatomyositis , Lung Diseases, Interstitial , Muscular Diseases , Myositis , Humans , Neutrophils , Muscle, Skeletal/pathology , Regeneration
8.
Infect Dis (Lond) ; 55(4): 243-254, 2023 04.
Article En | MEDLINE | ID: mdl-36637466

BACKGROUND: Currently, there is scant information regarding the features associated to the persistence of post-COVID-19 syndrome, which is the main aim of the present study. METHODS: A cohort study of 102 COVID-19 patients was conducted. The post-COVID-19 symptoms were assessed by a standardised questionnaire. Lymphocyte immunophenotyping was performed by flow cytometry and chemokines/cytokines, neutrophil extracellular traps, the tripartite motif 63, anti-cellular, and anti-SARS-CoV-2 IgG antibodies were addressed in serum. The primary outcome was the persistence of post-COVID-19 syndrome after six months follow-up. RESULTS: Thirteen patients (12.7%) developed the primary outcome and had a more frequent history of post-COVID-19 syndrome 3 months after infection onset (p = .044), increased levels of IL-1α (p = .011) and IP-10 (p = .037) and increased CD57 expression in CD8+ T cells (p = .003). There was a trend towards higher levels of IFN-γ (p = .051), IL-1ß (p = .062) and IL-6 (p = .087). The history of post COVID-19 in the previous 3 months, obesity, baseline serum MIP-1α and IP-10, and CD57 expression in CD8+ T cells were independently associated with the persistence of post-COVID-19 syndrome. CONCLUSION: Our data suggest an important relationship between a pro-inflammatory state mediated through metabolic pathways related to obesity and increased cellular senescence as a key element in the persistence of post-COVID-19 syndrome at six months of follow-up.


COVID-19 , Humans , COVID-19/complications , Pilot Projects , Post-Acute COVID-19 Syndrome , CD8-Positive T-Lymphocytes , Cohort Studies , Chemokine CXCL10 , Obesity
9.
Rheumatology (Oxford) ; 62(2): 775-784, 2023 02 01.
Article En | MEDLINE | ID: mdl-35766810

OBJECTIVE: To assess the proportion of myeloid-derived suppressor cells (MDSCs), their expression of arginase-1 and programmed cell death ligand 1 (PD-L1) and their relationship with the clinical phenotype of patients with idiopathic inflammatory myopathies (IIMs). METHODS: We recruited 37 IIM adult patients and 10 healthy donors in Mexico City. We evaluated their clinical features, the proportion of MDSCs and their expression of PD-L1 and arginase-1 by flow cytometry. Polymorphonuclear (PMN)-MDSCs were defined as CD33dim, CD11b+ and CD66b+ while monocytic (M)-MDSCs were CD33+, CD11b+, HLA-DR- and CD14+. Serum cytokines were analysed with a multiplex assay. We compared the quantitative variables with the Kruskal-Wallis and Mann-Whitney U tests and assessed correlations with Spearman's ρ. RESULTS: Most patients had dermatomyositis [n = 30 (81.0%)]. IIM patients had a peripheral expansion of PMN-MDSCs and M-MDSCs with an enhanced expression of arginase-1 and PD-L1. Patients with active disease had a decreased percentage {median 1.75% [interquartile range (IQR) 0.31-5.50 vs 10.71 [3.16-15.58], P = 0.011} of M-MDSCs and a higher absolute number of PD-L1+ M-MDSCs [median 23.21 cells/mm3 (IQR 11.16-148.9) vs 5.95 (4.66-102.7), P = 0.046] with increased expression of PD-L1 [median 3136 arbitrary units (IQR 2258-4992) vs 1961 (1885-2335), P = 0.038]. PD-L1 expression in PMN-MDSCs correlated with the visual analogue scale of pulmonary disease activity (r = 0.34, P = 0.040) and damage (r = 0.36, P = 0.031), serum IL-5 (r = 0.55, P = 0.003), IL-6 (r = 0.46, P = 0.003), IL-8 (r = 0.53, P = 0.018), IL-10 (r = 0.48, P = 0.005) and GM-CSF (r = 0.48, P = 0.012). M-MDSCs negatively correlated with the skeletal Myositis Intention to Treat Index (r = -0.34, P = 0.038) and positively with IL-6 (r = 0.40, P = 0.045). CONCLUSION: MDSCs expressing arginase-1 and PD-L1 are expanded in IIM and correlate with disease activity, damage accrual and serum cytokines.


Myeloid-Derived Suppressor Cells , Arginase/genetics , Arginase/metabolism , Interleukin-6/metabolism , B7-H1 Antigen/metabolism , Cytokines/metabolism
10.
Arthritis Rheumatol ; 75(6): 961-972, 2023 06.
Article En | MEDLINE | ID: mdl-36575804

OBJECTIVE: Variants in STAT4 are associated with systemic lupus erythematosus (SLE) and other autoimmune diseases. We undertook this study to investigate how disease-associated variants affect STAT4 expression, in particular in CD4+ T cells where STAT4 plays an essential role. METHODS: We compared Th1 differentiation between naive CD4+ T cells from healthy donors homozygous for the risk (R/R) or nonrisk (NR/NR) alleles. We analyzed epigenetic marks in STAT4 and evaluated the relevance of its third intron, assessed the consequences of Stat4 overexpression in vivo in mice, and analyzed the effects of the STAT4 genotype in patients with lupus nephritis. RESULTS: Naive CD4+ T cells from NR/NR healthy donors down-regulated STAT4 in response to interleukin-12 (IL-12). In contrast, cells from R/R healthy donors maintained high levels. R/R cells exhibited a higher abundance of transcriptionally active STAT4 and increased interferon-γ production. Accordingly, R/R healthy donors exhibited a stronger induction of local active enhancer marks. Genetic editing confirmed the presence of a negative regulatory region in the STAT4 third intron, where most of the SLE-associated STAT4 single-nucleotide polymorphisms (SNPs) are located. In vivo forced expression demonstrated that increases in Stat4 levels in T cells enhanced glomerulonephritis in mice. Accordingly, the R/R genotype was associated with suboptimal response to treatment and with worse clinical outcomes in patients with proliferative lupus nephritis. CONCLUSION: The SLE-associated STAT4 haplotype correlates with an abnormal IL-12-mediated STAT4 transcriptional regulation. Carriers of the risk variant exhibit exaggerated CD4+ proinflammatory capacities that, in the context of SLE, contribute to more severe disease. R/R patients may benefit from blockade of the IL-12/STAT4 pathway.


Lupus Erythematosus, Systemic , Lupus Nephritis , Animals , Mice , CD4-Positive T-Lymphocytes/metabolism , Down-Regulation , Haplotypes , Interferon-gamma/genetics , Interleukin-12 , Lupus Erythematosus, Systemic/genetics , Lupus Nephritis/genetics , Polymorphism, Single Nucleotide , STAT4 Transcription Factor/genetics , Humans
11.
Front Immunol ; 13: 1046631, 2022.
Article En | MEDLINE | ID: mdl-36569931

Regulatory T cells (Tregs) normally maintain self-tolerance. Tregs recognize "self" such that when they are not working properly, such as in autoimmunity, the immune system can attack and destroy one's own tissues. Current therapies for autoimmunity rely on relatively ineffective and too often toxic therapies to "treat" the destructive inflammation. Restoring defective endogenous immune regulation (self-tolerance) would represent a paradigm shift in the therapy of these diseases. One recent approach to restore self-tolerance is to use "low dose IL-2" as a therapy to increase the number of circulating Tregs. However, studies to-date have not demonstrated that low-dose IL-2 therapy can restore concomitant Treg function, and phase 2 studies in low dose IL-2 treated patients with autoimmune diseases have failed to demonstrate significant clinical benefit. We hypothesize that the defect in self-tolerance seen in autoimmunity is not due to an insufficient number of available Tregs, but rather, due to defects in second messengers downstream of the IL-2R that normally control Treg function and stability. Previous studies from our lab and others have demonstrated that GRAIL (a ubiquitin E3 ligase) is important in Treg function. GRAIL expression is markedly diminished in Tregs from patients with autoimmune diseases and allergic asthma and is also diminished in Tregs of mice that are considered autoimmune prone. In the relevant pathway in Tregs, GRAIL normally blocks cullin ring ligase activity, which inhibits IL-2R desensitization in Tregs and consequently promotes Treg function. As a result of this defect in GRAIL expression, the Tregs of patients with autoimmune diseases and allergic asthma degrade IL-2R-associated pJAK1 following activation with low dose IL-2, and thus cannot maintain pSTAT5 expression. pSTAT5 controls the transcription of genes required for Treg function. Additionally, the GRAIL-mediated defect may also allow the degradation of the mTOR inhibitor, DEP domain-containing mTOR interacting protein (Deptor). This can lead to IL-2R activation of mTOR and loss of Treg stability in autoimmune patients. Using a monoclonal antibody to the remnant di-glycine tag on ubiquitinated proteins after trypsin digestion, we identified a protein that was ubiquitinated by GRAIL that is important in Treg function, cullin5. Our data demonstrate that GRAIL acts a negative regulator of IL-2R desensitization by ubiquitinating a lysine on cullin5 that must be neddylated to allow cullin5 cullin ring ligase activity. We hypothesize that a neddylation inhibitor in combination with low dose IL-2 activation could be used to substitute for GRAIL and restore Treg function and stability in the Tregs of autoimmune and allergic asthma patients. However, the neddylation activating enzyme inhibitors (NAEi) are toxic when given systemically. By generating a protein drug conjugate (PDC) consisting of a NAEi bound, via cleavable linkers, to a fusion protein of murine IL-2 (to target the drug to Tregs), we were able to use 1000-fold less of the neddylation inhibitor drug than the amount required for therapeutically effective systemic delivery. The PDC was effective in blocking the onset or the progression of disease in several mouse models of autoimmunity (type 1 diabetes, systemic lupus erythematosus, and multiple sclerosis) and a mouse model of allergic asthma in the absence of detectable toxicity. This PDC strategy represents targeted drug delivery at its best where the defect causing the disease was identified, a drug was designed and developed to correct the defect, and the drug was targeted and delivered only to cells that needed it, maximizing safety and efficacy.


Autoimmune Diseases , T-Lymphocytes, Regulatory , Mice , Animals , Interleukin-2/metabolism , Cullin Proteins/metabolism , Receptors, Interleukin-2 , Autoimmune Diseases/metabolism , TOR Serine-Threonine Kinases/metabolism
12.
Front Immunol ; 13: 943563, 2022.
Article En | MEDLINE | ID: mdl-36045688

Background: Until now, most of the research addressing long-term humoral responses in coronavirus disease 2019 (COVID-19) had only evaluated the serum titers of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgGs, without the assessment of the baseline antiviral clinical and immune profile, which is the aim of this study and may be the key factor leading to a broad and sustained antibody response. Methods: We included 103 patients with COVID-19. When the patients sought medical attention (baseline), a blood sample was drawn to perform immunophenotype of lymphocytes by flow cytometry. The patients were assessed 15 days after baseline and then every month until the third month, followed by a last visit 6 months after recruitment. We evaluated the anti-SARS-COV-2 IgG at all time points, and the serum levels of cytokines, chemokines, anti-cellular (AC) antibodies and neutrophil extracellular traps were also assessed during the follow-up. The primary outcome of the study was the presence of a sustained immune humoral response, defined as an anti-SARS-CoV-2 IgG titer >4.99 arbitrary units/mL in at least two consecutive measures. We used generalized lineal models to assess the features associated with this outcome and to assess the effect of the changes in the cytokines and chemokines throughout time on the development of a sustained humoral immune response. Results: At baseline the features associated to a sustained immune humoral response were the diagnosis of critical disease, absolute number of lymphocytes, serum IP-10, IL-4, IL-2, regulatory T cells, CD8+ T cells, and positive AC antibodies. Critical illness and the positivity of AC antibodies were associated with a sustained humoral immune response after 3 months, whilst critical illness and serum IL-13 were the explanatory variables after 6 months. Conclusion: A sustained immune humoral response is strongly related to critical COVID-19, which is characterized by the presence of AC antibodies, quantitative abnormalities in the T cell compartment, and the serum cytokines and chemokines during acute infection and throughout time.


COVID-19 , Antibodies, Viral , CD8-Positive T-Lymphocytes , Chemokines , Cohort Studies , Critical Illness , Cytokines , Humans , Immunoglobulin G , SARS-CoV-2
13.
PLoS One ; 17(9): e0274910, 2022.
Article En | MEDLINE | ID: mdl-36126080

It is well known that the presence of comorbidities and age-related health issues may hide biochemical and metabolic features triggered by SARS-CoV-2 infection and other diseases associated to hypoxia, as they are by themselves chronic inflammatory conditions that may potentially disturb metabolic homeostasis and thereby negatively impact on COVID-19 progression. To unveil the metabolic abnormalities inherent to hypoxemia caused by COVID-19, we here applied gas chromatography coupled to mass spectrometry to analyze the main metabolic changes exhibited by a population of male patients less than 50 years of age with mild/moderate and severe COVID-19 without pre-existing comorbidities known to predispose to life-threatening complications from this infection. Several differences in serum levels of particular metabolites between normal controls and patients with COVID-19 as well as between mild/moderate and severe COVID-19 were identified. These included increased glutamic acid and reduced glutamine, cystine, threonic acid, and proline levels. In particular, using the entire metabolomic fingerprint obtained, we observed that glutamine/glutamate metabolism was associated with disease severity as patients in the severe COVID-19 group presented the lowest and higher serum levels of these amino acids, respectively. These data highlight the hypoxia-derived metabolic alterations provoked by SARS-CoV-2 infection in the absence of pre-existing co-morbidities as well as the value of amino acid metabolism in determining reactive oxygen species recycling pathways, which when impaired may lead to increased oxidation of proteins and cell damage. They also provide insights on new supportive therapies for COVID-19 and other disorders that involve altered redox homeostasis and lower oxygen levels that may lead to better outcomes of disease severity.


COVID-19 , Glutamic Acid , Amino Acids/metabolism , Cystine/metabolism , Gas Chromatography-Mass Spectrometry , Glutamic Acid/metabolism , Glutamine/metabolism , Homeostasis , Humans , Hypoxia , Male , Oxidation-Reduction , Oxygen , Proline/metabolism , Reactive Oxygen Species , SARS-CoV-2
14.
Front Immunol ; 13: 892241, 2022.
Article En | MEDLINE | ID: mdl-35663936

Lupus nephritis (LN) is one of the most common manifestations of systemic lupus erythematosus (SLE), characterized by abnormal B cell activation and differentiation to memory or plasma effector cells. However, the role of these cells in the pathogenesis of LN is not fully understood, as well as the effect of induction therapy on B cell subsets, possibly associated with this manifestation, like aged-associated B cells (ABCs). Consequently, we analyzed the molecules defining the ABCs subpopulation (CD11c, T-bet, and CD21) through flow cytometry of blood samples from patients with lupus presenting or not LN, following up a small sub-cohort after six months of induction therapy. The frequency of ABCs resulted higher in LN patients compared to healthy subjects. Unexpectedly, we identified a robust reduction of a CD21hi subset that was almost specific to LN patients. Moreover, several clinical and laboratory lupus features showed strong and significant correlations with this undefined B cell subpopulation. Finally, it was observed that the induction therapy affected not only the frequencies of ABCs and CD21hi subsets but also the phenotype of the CD21hi subset that expressed a higher density of CXCR5. Collectively, our results suggest that ABCs, and more importantly the CD21hi subset, may work to assess therapeutic response since the reduced frequency of CD21hi cells could be associated with the onset of LN.


B-Lymphocyte Subsets , Lupus Erythematosus, Systemic , Lupus Nephritis , Renal Insufficiency , Aged , Biomarkers , CD11c Antigen , Complement System Proteins/therapeutic use , Humans , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/drug therapy , Lupus Nephritis/diagnosis
15.
J Leukoc Biol ; 112(2): 333-337, 2022 08.
Article En | MEDLINE | ID: mdl-35199888

The contribution of B cells in COVID-19 pathogenesis, beyond the production of specific antibodies against SARS-CoV-2, is still not well understood. Since one of their most relevant functional roles includes their immune-suppressive mechanisms, we decided to evaluate one of the most recognized human B regulatory subpopulations: the IL-10+ B10 cells, during COVID-19 onset. After stimulation of PBMCs for IL-10 induction, we employed multiparametric flow cytometry to determine B10 frequencies in severe and critical COVID-19 patients and then correlated those with clinical and laboratory parameters. Compared with healthy individuals, we detected a significant reduction in the B10 subset in both patient groups, which correlates with some inflammatory parameters that define the disease severity. This evidence suggests an aberrant role of B10 cells in immune responses against SARS-CoV-2 that needs to be further explained.


B-Lymphocytes, Regulatory , COVID-19 , Flow Cytometry , Humans , Interleukin-10 , SARS-CoV-2
16.
Sci Rep ; 12(1): 1856, 2022 02 03.
Article En | MEDLINE | ID: mdl-35115644

Severe COVID-19 is associated with a systemic hyperinflammatory response leading to acute respiratory distress syndrome (ARDS), multi-organ failure, and death. Galectin-3 is a ß-galactoside binding lectin known to drive neutrophil infiltration and the release of pro-inflammatory cytokines contributing to airway inflammation. Thus, we aimed to investigate the potential of galectin-3 as a biomarker of severe COVID-19 outcomes. We prospectively included 156 patients with RT-PCR confirmed COVID-19. A severe outcome was defined as the requirement of invasive mechanical ventilation (IMV) and/or in-hospital death. A non-severe outcome was defined as discharge without IMV requirement. We used receiver operating characteristic (ROC) and multivariable logistic regression analysis to determine the prognostic ability of serum galectin-3 for a severe outcome. Galectin-3 levels discriminated well between severe and non-severe outcomes and correlated with markers of COVID-19 severity, (CRP, NLR, D-dimer, and neutrophil count). Using a forward-stepwise logistic regression analysis we identified galectin-3 [odds ratio (OR) 3.68 (95% CI 1.47-9.20), p < 0.01] to be an independent predictor of severe outcome. Furthermore, galectin-3 in combination with CRP, albumin and CT pulmonary affection > 50%, had significantly improved ability to predict severe outcomes [AUC 0.85 (95% CI 0.79-0.91, p < 0.0001)]. Based on the evidence presented here, we recommend clinicians measure galectin-3 levels upon admission to facilitate allocation of appropriate resources in a timely manner to COVID-19 patients at highest risk of severe outcome.


COVID-19/diagnosis , COVID-19/virology , Galectins/blood , SARS-CoV-2 , Adult , Aged , Biomarkers/blood , Blood Proteins , COVID-19/complications , COVID-19/immunology , Cytokines/metabolism , Female , Humans , Inflammation , Inflammation Mediators/metabolism , Male , Middle Aged , Neutrophil Infiltration , Patient Acuity , Predictive Value of Tests , Prognosis , Prospective Studies , Respiratory Distress Syndrome/etiology , Risk
17.
Inflamm Res ; 71(1): 131-140, 2022 Jan.
Article En | MEDLINE | ID: mdl-34850243

OBJECTIVES: The role of B cells in COVID-19, beyond the production of specific antibodies against SARS-CoV-2, is still not well understood. Here, we describe the novel landscape of circulating double-negative (DN) CD27- IgD- B cells in COVID-19 patients, representing a group of atypical and neglected subpopulations of this cell lineage. METHODS: Using multiparametric flow cytometry, we determined DN B cell subset amounts from 91 COVID-19 patients, correlated those with cytokines, clinical and laboratory parameters, and segregated them by principal components analysis. RESULTS: We detected significant increments in the DN2 and DN3 B cell subsets, while we found a relevant decrease in the DN1 B cell subpopulation, according to disease severity and patient outcomes. These DN cell numbers also appeared to correlate with pro- or anti-inflammatory signatures, respectively, and contributed to the segregation of the patients into disease severity groups. CONCLUSION: This study provides insights into DN B cell subsets' potential role in immune responses against SARS-CoV-2, particularly linked to the severity of COVID-19.


COVID-19/blood , COVID-19/immunology , Immunoglobulin D/blood , SARS-CoV-2 , Tumor Necrosis Factor Receptor Superfamily, Member 7/blood , Adult , Aged , Aged, 80 and over , B-Lymphocytes/cytology , COVID-19/diagnosis , COVID-19/virology , Cell Lineage , Computational Biology , Disease Progression , Female , Humans , Male , Middle Aged , Principal Component Analysis , Prognosis , Respiration, Artificial , Severity of Illness Index , Young Adult
18.
J Gen Intern Med ; 37(1): 4-14, 2022 01.
Article En | MEDLINE | ID: mdl-34755269

BACKGROUND: Colchicine is an available, safe, and effective anti-inflammatory drug and has been suggested as a COVID-19 treatment, but its usefulness in hospitalized severe COVID-19 patients has not been thoroughly demonstrated. OBJECTIVE: To address the safety and efficacy of colchicine in hospitalized patients with severe COVID-19. DESIGN: We conducted a triple-blind parallel non-stratified placebo-controlled clinical trial. PARTICIPANTS: We recruited 116 hospitalized patients with severe COVID-19 in Mexico. INTERVENTIONS: Patients were randomized to receive 1.5 mg of colchicine or placebo at the time of the recruitment in the study (baseline) and 0.5 mg BID PO to complete 10 days of treatment. MAIN MEASURES: The primary composite outcome was the progression to critical disease or death. Besides, we evaluated immunological features at baseline and after recovery or disease progression in 20 patients. KEY RESULTS: Fifty-six patients were allocated to colchicine and 60 patients received placebo. The study was suspended after the second interim analysis demonstrated colchicine had no effect on the primary outcome (OR 0.83, 95%CI 0.35-1.93, P = 0.67), nor in the days of ICU and hospital stays. Adverse events were similar between groups (OR 1.63, 95% CI 0.66-3.88, P = 0.37). After colchicine treatment, patients had higher BUN and lower serum levels of IL-8, IL-12p70, and IL-17A. CONCLUSIONS: Colchicine is safe but not effective in the treatment of severe COVID-19. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04367168.


COVID-19 Drug Treatment , Colchicine/adverse effects , Hospitalization , Humans , SARS-CoV-2 , Treatment Outcome
19.
J Clin Rheumatol ; 28(2): e480-e487, 2022 03 01.
Article En | MEDLINE | ID: mdl-34643846

BACKGROUND/OBJECTIVE: Biomarkers for disease activity and damage accrual in idiopathic inflammatory myopathies (IIMs) are currently lacking. The purpose of this cross-sectional study is to analyze the relationship among low-density granulocytes (LDGs), neutrophil extracellular traps (NETs), and clinical and immunological features of patients with IIM. METHODS: We assessed disease activity, damage accrual, amount of LDGs, NETs, expression of LL-37, and serum cytokines in 65 adult patients with IIM. Differences between groups and correlations were assessed by Kruskal-Wallis, Mann-Whitney U, and Spearman ρ tests. The association between LDGs, NETs, disease activity, calcinosis, and cutaneous ulcers was assessed by logistic regression. To address the capacity of LDGs and NETs to diagnose disease activity, we used receiving operating characteristic curves. RESULTS: Low-density granulocytes were higher in patients with active disease, ulcers, calcinosis, and anti-MDA5 antibodies, which correlated with serum levels of IL-17A and IL-18. Neutrophil extracellular traps were higher in patients with calcinosis, elevated titers of antinuclear antibodies, and positive anti-PM/Scl75 tests. The combination of a high proportion of both total LDGs and NETs was associated with the presence of calcinosis and cutaneous ulcers. LL-37 was higher in NETs originating from LDGs. Normal-density neutrophils were elevated in patients with active dermatomyositis. CONCLUSIONS: Low-density granulocytes and NETs containing LL-37 are increased in patients with IIM and active disease, and correlate with proinflammatory cytokines. Both total and CD10+ LDGs are potential biomarkers for disease activity and, in combination with NETs, have the potential to detect patients who are at risk for cutaneous ulcers and calcinosis.


Extracellular Traps , Myositis , Adult , Biomarkers , Cross-Sectional Studies , Extracellular Traps/metabolism , Granulocytes , Humans , Neutrophils/metabolism
...