Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
1.
Nat Neurosci ; 27(7): 1260-1273, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956165

ABSTRACT

Direct neuronal reprogramming is a promising approach to regenerate neurons from local glial cells. However, mechanisms of epigenome remodeling and co-factors facilitating this process are unclear. In this study, we combined single-cell multiomics with genome-wide profiling of three-dimensional nuclear architecture and DNA methylation in mouse astrocyte-to-neuron reprogramming mediated by Neurogenin2 (Ngn2) and its phosphorylation-resistant form (PmutNgn2), respectively. We show that Ngn2 drives multilayered chromatin remodeling at dynamic enhancer-gene interaction sites. PmutNgn2 leads to higher reprogramming efficiency and enhances epigenetic remodeling associated with neuronal maturation. However, the differences in binding sites or downstream gene activation cannot fully explain this effect. Instead, we identified Yy1, a transcriptional co-factor recruited by direct interaction with Ngn2 to its target sites. Upon deletion of Yy1, activation of neuronal enhancers, genes and ultimately reprogramming are impaired without affecting Ngn2 binding. Thus, our work highlights the key role of interactors of proneural factors in direct neuronal reprogramming.


Subject(s)
Astrocytes , Basic Helix-Loop-Helix Transcription Factors , Cellular Reprogramming , Nerve Tissue Proteins , Neurons , YY1 Transcription Factor , Animals , YY1 Transcription Factor/metabolism , YY1 Transcription Factor/genetics , Astrocytes/metabolism , Mice , Cellular Reprogramming/physiology , Neurons/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Epigenome , Chromatin Assembly and Disassembly , Epigenesis, Genetic , Cells, Cultured
2.
Redox Biol ; 75: 103211, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38908072

ABSTRACT

Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.

3.
Nat Commun ; 15(1): 2866, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570482

ABSTRACT

Traumatic brain injury leads to a highly orchestrated immune- and glial cell response partially responsible for long-lasting disability and the development of secondary neurodegenerative diseases. A holistic understanding of the mechanisms controlling the responses of specific cell types and their crosstalk is required to develop an efficient strategy for better regeneration. Here, we combine spatial and single-cell transcriptomics to chart the transcriptomic signature of the injured male murine cerebral cortex, and identify specific states of different glial cells contributing to this signature. Interestingly, distinct glial cells share a large fraction of injury-regulated genes, including inflammatory programs downstream of the innate immune-associated pathways Cxcr3 and Tlr1/2. Systemic manipulation of these pathways decreases the reactivity state of glial cells associated with poor regeneration. The functional relevance of the discovered shared signature of glial cells highlights the importance of our resource enabling comprehensive analysis of early events after brain injury.


Subject(s)
Brain Injuries , Wounds, Stab , Animals , Mice , Male , Glial Fibrillary Acidic Protein/metabolism , Neuroglia/metabolism , Brain Injuries/metabolism , Cerebral Cortex/metabolism , Wounds, Stab/complications , Wounds, Stab/metabolism
4.
Genes Dev ; 38(3-4): 98-114, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38485267

ABSTRACT

Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.


Subject(s)
Mitochondria , Organelles , Organelles/metabolism , Mitochondria/metabolism , Cell Division , Ribosomes/metabolism , Cell Differentiation
5.
Sci Adv ; 10(13): eadn9998, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38536915

ABSTRACT

Cortical neurogenesis follows a simple lineage: apical radial glia cells (RGCs) generate basal progenitors, and these produce neurons. How this occurs in species with expanded germinal zones and a folded cortex, such as human, remains unclear. We used single-cell RNA sequencing from individual cortical germinal zones in ferret and barcoded lineage tracking to determine the molecular diversity of progenitor cells and their lineages. We identified multiple RGC classes that initiate parallel lineages, converging onto a common class of newborn neuron. Parallel RGC classes and transcriptomic trajectories were repeated across germinal zones and conserved in ferret and human, but not in mouse. Neurons followed parallel differentiation trajectories in the gyrus and sulcus, with different expressions of human cortical malformation genes. Progenitor cell lineage multiplicity is conserved in the folded mammalian cerebral cortex.


Subject(s)
Cerebral Cortex , Ferrets , Animals , Mice , Humans , Cell Lineage/physiology , Neurons/physiology , Cell Differentiation , Neurogenesis
6.
Neuron ; 112(7): 1117-1132.e9, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38266647

ABSTRACT

Mitochondria account for essential cellular pathways, from ATP production to nucleotide metabolism, and their deficits lead to neurological disorders and contribute to the onset of age-related diseases. Direct neuronal reprogramming aims at replacing neurons lost in such conditions, but very little is known about the impact of mitochondrial dysfunction on the direct reprogramming of human cells. Here, we explore the effects of mitochondrial dysfunction on the neuronal reprogramming of induced pluripotent stem cell (iPSC)-derived astrocytes carrying mutations in the NDUFS4 gene, important for Complex I and associated with Leigh syndrome. This led to the identification of the unfolded protein response as a major hurdle in the direct neuronal conversion of not only astrocytes and fibroblasts from patients but also control human astrocytes and fibroblasts. Its transient inhibition potently improves reprogramming by influencing the mitochondria-endoplasmic-reticulum-stress-mediated pathways. Taken together, disease modeling using patient cells unraveled novel general hurdles and ways to overcome these in human astrocyte-to-neuron reprogramming.


Subject(s)
Induced Pluripotent Stem Cells , Mitochondrial Diseases , Humans , Neurons/physiology , Mitochondria/metabolism , Induced Pluripotent Stem Cells/metabolism , Unfolded Protein Response , Astrocytes/metabolism , Mitochondrial Diseases/metabolism , Cellular Reprogramming , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism
7.
J Biol Chem ; 300(2): 105648, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219816

ABSTRACT

Cellular plasticity is crucial for adapting to ever-changing stimuli. As a result, cells consistently reshape their translatome, and, consequently, their proteome. The control of translational activity has been thoroughly examined at the stage of translation initiation. However, the regulation of ribosome speed in cells is widely unknown. In this study, we utilized a timed ribosome runoff approach, along with proteomics and transmission electron microscopy, to investigate global translation kinetics in cells. We found that ribosome speeds vary among various cell types, such as astrocytes, induced pluripotent human stem cells, human neural stem cells, and human and rat neurons. Of all cell types studied, mature cortical neurons exhibit the highest rate of translation. This finding is particularly remarkable because mature cortical neurons express the eukaryotic elongation factor 2 (eEF2) at lower levels than other cell types. Neurons solve this conundrum by inactivating a fraction of their ribosomes. As a result, the increase in eEF2 levels leads to a reduction of inactive ribosomes and an enhancement of active ones. Processes that alter the demand for active ribosomes, like neuronal excitation, cause increased inactivation of redundant ribosomes in an eEF2-dependent manner. Our data suggest a novel regulatory mechanism in which neurons dynamically inactivate ribosomes to facilitate translational remodeling. These findings have important implications for developmental brain disorders characterized by, among other things, aberrant translation.


Subject(s)
Protein Biosynthesis , Ribosomes , Animals , Humans , Rats , Neurons/metabolism , Protein Processing, Post-Translational , Ribosomes/metabolism , Mice , Mice, Inbred C57BL
8.
Nat Med ; 29(12): 3149-3161, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38066208

ABSTRACT

The glial environment influences neurological disease progression, yet much of our knowledge still relies on preclinical animal studies, especially regarding astrocyte heterogeneity. In murine models of traumatic brain injury, beneficial functions of proliferating reactive astrocytes on disease outcome have been unraveled, but little is known regarding if and when they are present in human brain pathology. Here we examined a broad spectrum of pathologies with and without intracerebral hemorrhage and found a striking correlation between lesions involving blood-brain barrier rupture and astrocyte proliferation that was further corroborated in an assay probing for neural stem cell potential. Most importantly, proteomic analysis unraveled a crucial signaling pathway regulating this astrocyte plasticity with GALECTIN3 as a novel marker for proliferating astrocytes and the GALECTIN3-binding protein LGALS3BP as a functional hub mediating astrocyte proliferation and neurosphere formation. Taken together, this work identifies a therapeutically relevant astrocyte response and their molecular regulators in different pathologies affecting the human cerebral cortex.


Subject(s)
Astrocytes , Neural Stem Cells , Humans , Mice , Animals , Astrocytes/pathology , Proteomics , Brain , Central Nervous System
9.
Postepy Dermatol Alergol ; 40(5): 661-669, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38028417

ABSTRACT

Introduction: The key to the correct diagnosis of shrimp allergy is a qualification to the most efficient diagnostic method and later interpretation of the result. To achieve this, it is necessary to apply a diagnostic strategy relevant to each patient's clinical situation and approach every case individually. Aim: In this study the allergen profile of shrimp-sensitized patients was analysed using ALEX2 Allergy Explorer. Material and methods: This study includes 50 adult patients with positive prick-by-prick tests with tiger shrimp bought from the local eco-market and an elevated concentration of IgE specific to the shrimp allergen extract (ImmunoCap). A total of 35 patients with negative skin prick tests with shrimp and not detectable sIgE shrimp in ImmunoCap were included in the control group. All patients had ALEX2 Allergy Explorer microarray test. Results: In the shrimp-sensitized group, 22 patients were sensitized to at least one allergen component of Penaeus monodon, 20 patients were sensitized to crab, and 20 were sensitized to lobster. Only 15 (30%) patients were sensitized to the Northern prawn (Pandalus borealis) allergen extract in ALEX2 and only 12 (24%) to Shrimp mix (Litopenaeus setiferus, Farfantepenaeus aztecus, Farfantepenaeus dourarum). Conclusions: Sensitization to shrimp tropomyosin in the research group was present only in 34% of cases. There may be other shrimp allergen components, not available in ALEX2, which are responsible for shrimp sensitization.

10.
Neuron ; 111(8): 1241-1263.e16, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36796357

ABSTRACT

Cortical projection neurons polarize and form an axon while migrating radially. Even though these dynamic processes are closely interwoven, they are regulated separately-the neurons terminate their migration when reaching their destination, the cortical plate, but continue to grow their axons. Here, we show that in rodents, the centrosome distinguishes these processes. Newly developed molecular tools modulating centrosomal microtubule nucleation combined with in vivo imaging uncovered that dysregulation of centrosomal microtubule nucleation abrogated radial migration without affecting axon formation. Tightly regulated centrosomal microtubule nucleation was required for periodic formation of the cytoplasmic dilation at the leading process, which is essential for radial migration. The microtubule nucleating factor γ-tubulin decreased at neuronal centrosomes during the migratory phase. As distinct microtubule networks drive neuronal polarization and radial migration, this provides insight into how neuronal migratory defects occur without largely affecting axonal tracts in human developmental cortical dysgeneses, caused by mutations in γ-tubulin.


Subject(s)
Neurons , Tubulin , Humans , Tubulin/metabolism , Neurons/physiology , Axons/metabolism , Microtubules/metabolism , Centrosome , Brain/metabolism
11.
Postepy Dermatol Alergol ; 39(5): 913-922, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36457677

ABSTRACT

Introduction: SARS-CoV-2 is responsible for causing the COVID-19 disease, which affected 174 million people worldwide. After vaccines were launched, the focus was on their effectiveness and the degree of their safety. Aim: The authors try to find factors that may affect the response to vaccination. Material and methods: The study was conducted in 47 adults (39 women and 8 men; age: 47.3 ±11.2). Participants were vaccinated with two doses of the Comirnaty mRNA vaccine. Each patient had a medical history taken and the concentration of specific sIgG antibodies against S1 protein and SARS-CoV-2 N protein, as well as of selected cytokines (IL-8, TGF-ß, IFN-γ) was determined before and 3 weeks after the first and second dose of the vaccine. Results: There were 18 convalescents among the respondents. A statistically significant increase in the concentration of specific sIgG S1 in subsequent determinations was observed. Higher levels of sIgG S1 were found after the first dose of the vaccine in COVID-19 convalescents. There was no statistically significant influence of age, body mass index and sex on the increase in the concentration of antibodies and the concentration of the determined cytokines. It was shown that the higher the initial TGF-ß concentration, the greater the increase in sIgG S1 after administration of the vaccine. Conclusions: Vaccination did not increase the levels of IL-8, IFN-ß and TGF-γ. A higher concentration of serum TGF-ß before vaccination correlated with the higher concentration of sIgG S1 antibodies after the first dose of the vaccine.

12.
Mol Syst Biol ; 18(9): e11129, 2022 09.
Article in English | MEDLINE | ID: mdl-36106915

ABSTRACT

Despite the therapeutic promise of direct reprogramming, basic principles concerning fate erasure and the mechanisms to resolve cell identity conflicts remain unclear. To tackle these fundamental questions, we established a single-cell protocol for the simultaneous analysis of multiple cell fate conversion events based on combinatorial and traceable reprogramming factor expression: Collide-seq. Collide-seq revealed the lack of a common mechanism through which fibroblast-specific gene expression loss is initiated. Moreover, we found that the transcriptome of converting cells abruptly changes when a critical level of each reprogramming factor is attained, with higher or lower levels not contributing to major changes. By simultaneously inducing multiple competing reprogramming factors, we also found a deterministic system, in which titration of fates against each other yields dominant or colliding fates. By investigating one collision in detail, we show that reprogramming factors can disturb cell identity programs independent of their ability to bind their target genes. Taken together, Collide-seq has shed light on several fundamental principles of fate conversion that may aid in improving current reprogramming paradigms.


Subject(s)
Cellular Reprogramming , Fibroblasts , Cell Differentiation/genetics , Cellular Reprogramming/genetics , Fibroblasts/metabolism , Transcriptome/genetics
13.
Sci Adv ; 8(23): eabg9445, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35687687

ABSTRACT

Cell transplantation is a promising approach for the reconstruction of neuronal circuits after brain damage. Transplanted neurons integrate with remarkable specificity into circuitries of the mouse cerebral cortex affected by neuronal ablation. However, it remains unclear how neurons perform in a local environment undergoing reactive gliosis, inflammation, macrophage infiltration, and scar formation, as in traumatic brain injury (TBI). To elucidate this, we transplanted cells from the embryonic mouse cerebral cortex into TBI-injured, inflamed-only, or intact cortex of adult mice. Brain-wide quantitative monosynaptic rabies virus (RABV) tracing unraveled graft inputs from correct regions across the brain in all conditions, with pronounced quantitative differences: scarce in intact and inflamed brain versus exuberant after TBI. In the latter, the initial overshoot is followed by pruning, with only a few input neurons persisting at 3 months. Proteomic profiling identifies candidate molecules for regulation of the synaptic yield, a pivotal parameter to tailor for functional restoration of neuronal circuits.

14.
Sci Adv ; 8(23): eabg9287, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35687689

ABSTRACT

Transplantation is a clinically relevant approach for brain repair, but much remains to be understood about influences of the disease environment on transplant connectivity. To explore the effect of amyloid pathology in Alzheimer's disease (AD) and aging, we examined graft connectivity using monosynaptic rabies virus tracing in APP/PS1 mice and in 16- to 18-month-old wild-type (WT) mice. Transplanted neurons differentiated within 4 weeks and integrated well into the host visual cortex, receiving input from the appropriate brain regions for this area. Unexpectedly, we found a prominent several-fold increase in local inputs, in both amyloid-loaded and aged environments. State-of-the-art deep proteome analysis using mass spectrometry highlights complement system activation as a common denominator of environments promoting excessive local input connectivity. These data therefore reveal the key role of the host pathology in shaping the input connectome, calling for caution in extrapolating results from one pathological condition to another.

15.
Trends Cell Biol ; 32(8): 707-719, 2022 08.
Article in English | MEDLINE | ID: mdl-35750615

ABSTRACT

Stem cells are at the source of creating cellular diversity. Multiple mechanisms, including basic cell biological processes, regulate their fate. The centrosome is at the core of many stem cell functions and recent work highlights the association of distinct proteins at the centrosome in stem cell differentiation. As showcased by a novel centrosome protein regulating neural stem cell differentiation, it is timely to review the heterogeneity of the centrosome at protein and RNA levels and how this impacts their function in stem and progenitor cells. Together with evidence for heterogeneity of other organelles so far considered as similar between cells, we call for exploring the cell type-specific composition of organelles as a way to expand protein function in development with relevance to regenerative medicine.


Subject(s)
Centrosome , Neural Stem Cells , Cell Differentiation/physiology , Centrosome/metabolism , Humans , Nervous System , Organelles
16.
Science ; 376(6599): eabf9088, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35709258

ABSTRACT

The centrosome provides an intracellular anchor for the cytoskeleton, regulating cell division, cell migration, and cilia formation. We used spatial proteomics to elucidate protein interaction networks at the centrosome of human induced pluripotent stem cell-derived neural stem cells (NSCs) and neurons. Centrosome-associated proteins were largely cell type-specific, with protein hubs involved in RNA dynamics. Analysis of neurodevelopmental disease cohorts identified a significant overrepresentation of NSC centrosome proteins with variants in patients with periventricular heterotopia (PH). Expressing the PH-associated mutant pre-mRNA-processing factor 6 (PRPF6) reproduced the periventricular misplacement in the developing mouse brain, highlighting missplicing of transcripts of a microtubule-associated kinase with centrosomal location as essential for the phenotype. Collectively, cell type-specific centrosome interactomes explain how genetic variants in ubiquitous proteins may convey brain-specific phenotypes.


Subject(s)
Centrosome , Neural Stem Cells , Neurogenesis , Neurons , Periventricular Nodular Heterotopia , Protein Interaction Maps , Alternative Splicing , Animals , Brain/abnormalities , Centrosome/metabolism , Humans , Induced Pluripotent Stem Cells , Mice , Microtubules/metabolism , Neurons/metabolism , Periventricular Nodular Heterotopia/metabolism , Proteome/metabolism , RNA Splicing Factors/metabolism , Transcription Factors/metabolism
17.
Cell Mol Life Sci ; 79(5): 244, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35430697

ABSTRACT

Adult neurogenesis has been described in two canonical regions of the adult central nervous system (CNS) of rodents, the subgranular zone (SGZ) of the hippocampus and the subependymal zone (SEZ) of the lateral ventricles. The stem cell niche of the SEZ provides a privileged environment composed of a specialized extracellular matrix (ECM) that comprises the glycoproteins tenascin-C (Tnc) and laminin-1 (LN1). In the present study, we investigated the function of these ECM glycoproteins in the adult stem cell niche. Adult neural stem/progenitor cells (aNSPCs) of the SEZ were prepared from wild type (Tnc+/+) and Tnc knockout (Tnc-/-) mice and analyzed using molecular and cell biological approaches. A delayed maturation of aNSPCs in Tnc-/- tissue was reflected by a reduced capacity to form neurospheres in response to epidermal growth factor (EGF). To examine a potential influence of the ECM on cell proliferation, aNSPCs of both genotypes were studied by cell tracking using digital video microscopy. aNSPCs were cultivated on three different substrates, namely, poly-D-lysine (PDL) and PDL replenished with either LN1 or Tnc for up to 6 days in vitro. On each of the three substrates aNSPCs displayed lineage trees that could be investigated with regard to cell cycle length. The latter appeared reduced in Tnc-/- aNSPCs on PDL and LN1 substrates, less so on Tnc that seemed to compensate the absence of the ECM compound to some extent. Close inspection of the lineage trees revealed a subpopulation of late dividing aNSPCslate that engaged into cycling after a notable delay. aNSPCslate exhibited a clearly different morphology, with a larger cell body and conspicuous processes. aNSPCslate reiterated the reduction in cell cycle length on all substrates tested, which was not rescued on Tnc substrates. When the migratory activity of aNSPC-derived progeny was determined, Tnc-/- neuroblasts displayed significantly longer migration tracks. This was traced to an increased rate of migration episodes compared to the wild-type cells that rested for longer time periods. We conclude that Tnc intervenes in the proliferation of aNSPCs and modulates the motility of neuroblasts in the niche of the SEZ.


Subject(s)
Adult Stem Cells , Neural Stem Cells , Adult Stem Cells/metabolism , Animals , Cell Division , Extracellular Matrix/metabolism , Mice , Neural Stem Cells/metabolism , Tenascin/genetics , Tenascin/metabolism
18.
EMBO Mol Med ; 14(5): e14797, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35373464

ABSTRACT

Direct reprogramming based on genetic factors resembles a promising strategy to replace lost cells in degenerative diseases such as Parkinson's disease. For this, we developed a knock-in mouse line carrying a dual dCas9 transactivator system (dCAM) allowing the conditional in vivo activation of endogenous genes. To enable a translational application, we additionally established an AAV-based strategy carrying intein-split-dCas9 in combination with activators (AAV-dCAS). Both approaches were successful in reprogramming striatal astrocytes into induced GABAergic neurons confirmed by single-cell transcriptome analysis of reprogrammed neurons in vivo. These GABAergic neurons functionally integrate into striatal circuits, alleviating voluntary motor behavior aspects in a 6-OHDA Parkinson's disease model. Our results suggest a novel intervention strategy beyond the restoration of dopamine levels. Thus, the AAV-dCAS approach might enable an alternative route for clinical therapies of Parkinson's disease.


Subject(s)
Parkinson Disease , Animals , Astrocytes , Corpus Striatum , Dopamine , Dopaminergic Neurons , GABAergic Neurons , Mice , Parkinson Disease/genetics , Parkinson Disease/therapy
19.
Adv Sci (Weinh) ; 9(16): e2104979, 2022 05.
Article in English | MEDLINE | ID: mdl-35398994

ABSTRACT

Astrocytes have crucial functions in the central nervous system (CNS) and are major players in many CNS diseases. Research on astrocyte-centered diseases requires efficient and well-characterized gene transfer vectors. Vectors derived from the Adeno-associated virus serotype 9 (AAV9) target astrocytes in the brains of rodents and nonhuman primates. A recombinant (r) synthetic peptide-displaying AAV9 variant, rAAV9P1, that efficiently and selectively transduces cultured human astrocytes, has been described previously. Here, it is shown that rAAV9P1 retains astrocyte-targeting properties upon intravenous injection in mice. Detailed analysis of putative receptors on human astrocytes shows that rAAV9P1 utilizes integrin subunits αv, ß8, and either ß3 or ß5 as well as the AAV receptor AAVR. This receptor pattern is distinct from that of vectors derived from wildtype AAV2 or AAV9. Furthermore, a CRISPR/Cas9 genome-wide knockout screening revealed the involvement of several astrocyte-associated intracellular signaling pathways in the transduction of human astrocytes by rAAV9P1. This study delineates the unique receptor and intracellular pathway signatures utilized by rAAV9P1 for targeting human astrocytes. These results enhance the understanding of the transduction biology of synthetic rAAV vectors for astrocytes and can promote the development of advanced astrocyte-selective gene delivery vehicles for research and clinical applications.


Subject(s)
Astrocytes , Genetic Vectors , Animals , Astrocytes/metabolism , Dependovirus/genetics , Gene Transfer Techniques , Genetic Vectors/genetics , Mice , Transduction, Genetic
20.
Cells ; 11(3)2022 02 02.
Article in English | MEDLINE | ID: mdl-35159329

ABSTRACT

The oligodendrocyte progenitors (OPCs) are at the front of the glial reaction to the traumatic brain injury. However, regulatory pathways steering the OPC reaction as well as the role of reactive OPCs remain largely unknown. Here, we compared a long-lasting, exacerbated reaction of OPCs to the adult zebrafish brain injury with a timely restricted OPC activation to identify the specific molecular mechanisms regulating OPC reactivity and their contribution to regeneration. We demonstrated that the influx of the cerebrospinal fluid into the brain parenchyma after injury simultaneously activates the toll-like receptor 2 (Tlr2) and the chemokine receptor 3 (Cxcr3) innate immunity pathways, leading to increased OPC proliferation and thereby exacerbated glial reactivity. These pathways were critical for long-lasting OPC accumulation even after the ablation of microglia and infiltrating monocytes. Importantly, interference with the Tlr1/2 and Cxcr3 pathways after injury alleviated reactive gliosis, increased new neuron recruitment, and improved tissue restoration.


Subject(s)
Oligodendrocyte Precursor Cells , Animals , Brain , Gliosis/metabolism , Immunity, Innate , Oligodendrocyte Precursor Cells/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...