Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Turk J Chem ; 46(1): 269-282, 2022.
Article in English | MEDLINE | ID: mdl-38143885

ABSTRACT

Teucrium species that belong to the family Lamiaceae have been traditionally used for their medicinal properties. T. polium is one the most widespread members of the genus for its use in the treatment of several diseases. In this study, the essential oil and phenolic composition of the aerial parts from T. polium were assessed by GC-FID, GC/MS, and LC-MS/MS as well as for its total phenolic content. Several extracts such as n-hexane, chloroform, methanol, and infusion were prepared and their antimicrobial, antioxidant, and also acetylcholinesterase activities were studied. According to GC/MS results, ß -caryophyllene (8.8%), t-cadinol (6.2%), (E)-nerolidol (5%), α -cadinol (5.4%), and α-pinene (4.7%) were identified as main constituents of the essential oil. LC MS/MS analysis of the infusion and the methanol extract showed the presence of 15 phenolic compounds. Moreover, the total phenolic content of each sample was also determined and the infusion had the highest percentage of phenolics. To evaluate the antioxidant properties, the samples were tested by using DPPH" free radical scavenging, FRAP, and CUPRAC activity methods. The infusion showed the strongest radical scavenging activity, whereas n-hexane and chloroform extracts exhibited considerable reducing power effects. The MIC values for all of the examined microorganisms ranged from 15 to 2000 µg/mL with respect to antimicrobial activities.

2.
Fitoterapia ; 139: 104371, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31629051

ABSTRACT

Extrusion of drugs or drug-like compounds through bacterial efflux pumps is a serious health issue that leads to loss in drug efficacy. Combinatorial therapies of low-efficacy drugs with efflux pump inhibitors may help to restore the activities of such drugs. In this quest, natural products are attractive molecules, since in addition to their wide range of bioactivities they may inhibit efflux pumps. The current work repurposed the bioactive alkaloid roemerine as a potential efflux pump inhibitor. In Bacillus subtilis, both Bmr and BmrA, belonging to the major facilitator and the ATP-binding cassette superfamilies, respectively, were found to be inhibited by roemerine. Scanning electron microscopy and RNA-Seq analyses showed that it potentiated the effect of berberine. Growth rates and checkerboard assays confirmed the synergy of roemerine and berberine and that roemerine prevented berberine efflux by inhibiting Bmr. Transport assays with inverted membrane vesicles prepared from Escherichia coli overexpressing BmrA showed that increasing roemerine concentration decreased the transport of doxorubicin, the BmrA substrate, confirming that roemerine may also be considered as an inhibitor of BmrA. Thus, these findings suggest that conjugation of roemerine to substrates of efflux pumps, Bmr and BmrA, may help to potentiate the activity of their drug substrates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Aporphines/pharmacology , Bacterial Proteins/antagonists & inhibitors , Alkaloids/pharmacology , Bacillus subtilis/drug effects , Berberine/pharmacology , Biological Transport , Drug Repositioning , Drug Synergism , Escherichia coli/drug effects , Membrane Transport Proteins , Microbial Sensitivity Tests , Molecular Structure , Papaver/chemistry , Plant Components, Aerial/chemistry , Turkey
3.
Curr Genet ; 63(4): 709-722, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28013396

ABSTRACT

Among the different families of plant alkaloids, (-)-roemerine, an aporphine type, was recently shown to possess significant antibacterial activity in Escherichia coli. Based on the increasing demand for antibacterials with novel mechanisms of action, the present work investigates the potential of the plant-derived alkaloid (-)-roemerine as an antibacterial in E. coli cells using microarray technology. Analysis of the genome-wide transcriptional reprogramming in cells after 60 min treatment with 100 µg/mL (-)-roemerine showed significant changes in the expression of 241 genes (p value <0.05 and fold change >2). Expression of selected genes was confirmed by qPCR. Differentially expressed genes were classified into functional categories to map biological processes and molecular pathways involved. Cellular activities with roles in carbohydrate transport and metabolism, energy production and conversion, lipid transport and metabolism, amino acid transport and metabolism, two-component signaling systems, and cell motility (in particular, the flagellar organization and motility) were among metabolic processes altered in the presence of (-)-roemerine. The down-regulation of the outer membrane proteins probably led to a decrease in carbohydrate uptake rate, which in turn results in nutrient limitation. Consequently, energy metabolism is slowed down. Interestingly, the majority of the expressional alterations were found in the flagellar system. This suggested reduction in motility and loss in the ability to form biofilms, thus affecting protection of E. coli against host cell defense mechanisms. In summary, our findings suggest that the antimicrobial action of (-)-roemerine in E. coli is linked to disturbances in motility and nutrient uptake.


Subject(s)
Alkaloids/pharmacology , Biofilms/drug effects , Cell Movement/drug effects , Escherichia coli/drug effects , Alkaloids/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Biological Transport/drug effects , Biological Transport/genetics , Energy Metabolism/drug effects , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli Infections/drug therapy , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...