Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Am J Bot ; 110(4): e16146, 2023 04.
Article En | MEDLINE | ID: mdl-36826405

PREMISE: Understanding tree species' responses to drought is critical for predicting the future of tropical forests, especially in regions where the climate is changing rapidly. METHODS: We compared anatomical and functional traits of the dominant tree species of two tropical forests in southern Amazonia, one on deep, well-drained soils (cerradão [CD]) and one in a riparian environment (gallery forest [GF]), to examine potential anatomical indicators of resistance or vulnerability to drought. RESULTS: Leaves of CD species generally had a thicker cuticle, upper epidermis, and mesophyll than those of GF species, traits that are indicative of adaptation to water deficit. In the GF, the theoretical hydraulic conductivity of the stems was significantly higher, indicating lower investment in drought resistance. The anatomical functional traits of CD species indicate a greater potential for surviving water restriction compared to the GF. Even so, it is possible that CD species could also be affected by extreme climate changes due to the more water-limited environment. CONCLUSIONS: In addition to the marked anatomical and functional differences between these phytophysiognomies, tree diversity within each is associated with a large range of hydraulic morphofunctional niches. Our results suggest the strong potential for floristic and functional compositional shifts under continued climate change, especially in the GF.


Trees , Water , Trees/physiology , Water/physiology , Tropical Climate , Forests , Droughts , Plant Leaves/physiology
2.
Nat Ecol Evol ; 3(12): 1754-1761, 2019 12.
Article En | MEDLINE | ID: mdl-31712699

Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity. Amazon forests that contain greater evolutionary diversity and a higher proportion of rare species have higher productivity. While climatic and edaphic variables are together the strongest predictors of productivity, our results show that the evolutionary diversity of tree species in diverse forest stands also influences productivity. As our models accounted for wood density and tree size, they also suggest that additional, unstudied, evolutionarily correlated traits have significant effects on ecosystem function in tropical forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic diversity translates into higher levels of ecosystem function: tropical forest communities with more distantly related taxa have greater wood productivity.


Ecosystem , Wood , Forests , Phylogeny , Tropical Climate
3.
Plant Cell Environ ; 41(7): 1618-1631, 2018 07.
Article En | MEDLINE | ID: mdl-29603771

Given anticipated climate changes, it is crucial to understand controls on leaf temperatures including variation between species in diverse ecosystems. In the first study of leaf energy balance in tropical montane forests, we observed current leaf temperature patterns on 3 tree species in the Atlantic forest, Brazil, over a 10-day period and assessed whether and why patterns may vary among species. We found large leaf-to-air temperature differences (maximum 18.3 °C) and high leaf temperatures (over 35 °C) despite much lower air temperatures (maximum 22 °C). Leaf-to-air temperature differences were influenced strongly by radiation, whereas leaf temperatures were also influenced by air temperature. Leaf energy balance modelling informed by our measurements showed that observed differences in leaf temperature between 2 species were due to variation in leaf width and stomatal conductance. The results suggest a trade-off between water use and leaf thermoregulation; Miconia cabussu has more conservative water use compared with Alchornea triplinervia due to lower transpiration under high vapour pressure deficit, with the consequence of higher leaf temperatures under thermal stress conditions. We highlight the importance of leaf functional traits for leaf thermoregulation and also note that the high radiation levels that occur in montane forests may exacerbate the threat from increasing air temperatures.


Plant Leaves/physiology , Trees/physiology , Body Temperature Regulation/physiology , Brazil , Energy Metabolism , Euphorbiaceae/metabolism , Euphorbiaceae/physiology , Melastomataceae/metabolism , Melastomataceae/physiology , Nyctaginaceae/metabolism , Nyctaginaceae/physiology , Plant Leaves/metabolism , Temperature , Trees/metabolism , Water/metabolism
4.
Proc Biol Sci ; 283(1844)2016 12 14.
Article En | MEDLINE | ID: mdl-27974517

Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change.


Forests , Phylogeny , Trees/classification , Tropical Climate , Biological Evolution , Ecology , South America
5.
Glob Chang Biol ; 21(6): 2283-95, 2015 Jun.
Article En | MEDLINE | ID: mdl-25640987

Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling.


Carbon Cycle , Forests , Photosynthesis , Trees/growth & development , Trees/metabolism , Animals , Biomass , Carbon/metabolism , Droughts , Models, Theoretical , South America , Tropical Climate
6.
Glob Chang Biol ; 21(7): 2569-2587, 2015 Jul.
Article En | MEDLINE | ID: mdl-25704051

There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias-corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land-use change scenarios. We assess the relative roles of climate change, CO2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land-use change and climate-driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO2 impacts varies considerably, depending on both the climate and land-use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors - climate change, CO2 fertilization effects, fire, and land use - to the fate of the Amazon over the coming century.

7.
Bioscience ; 65(9): 882-892, 2015 Sep 01.
Article En | MEDLINE | ID: mdl-26955085

Many tropical rain forest regions are at risk of increased future drought. The net effects of drought on forest ecosystem functioning will be substantial if important ecological thresholds are passed. However, understanding and predicting these effects is challenging using observational studies alone. Field-based rainfall exclusion (canopy throughfall exclusion; TFE) experiments can offer mechanistic insight into the response to extended or severe drought and can be used to help improve model-based simulations, which are currently inadequate. Only eight TFE experiments have been reported for tropical rain forests. We examine them, synthesizing key results and focusing on two processes that have shown threshold behavior in response to drought: (1) tree mortality and (2) the efflux of carbon dioxdie from soil, soil respiration. We show that: (a) where tested using large-scale field experiments, tropical rain forest tree mortality is resistant to long-term soil moisture deficit up to a threshold of 50% of the water that is extractable by vegetation from the soil, but high mortality occurs beyond this value, with evidence from one site of increased autotrophic respiration, and (b) soil respiration reaches its peak value in response to soil moisture at significantly higher soil moisture content for clay-rich soils than for clay-poor soils. This first synthesis of tropical TFE experiments offers the hypothesis that low soil moisture-related thresholds for key stress responses in soil and vegetation may prove to be widely applicable across tropical rain forests despite the diversity of these forests.

8.
New Phytol ; 200(2): 350-365, 2013 Oct.
Article En | MEDLINE | ID: mdl-23844931

Considerable uncertainty surrounds the fate of Amazon rainforests in response to climate change. Here, carbon (C) flux predictions of five terrestrial biosphere models (Community Land Model version 3.5 (CLM3.5), Ecosystem Demography model version 2.1 (ED2), Integrated BIosphere Simulator version 2.6.4 (IBIS), Joint UK Land Environment Simulator version 2.1 (JULES) and Simple Biosphere model version 3 (SiB3)) and a hydrodynamic terrestrial ecosystem model (the Soil-Plant-Atmosphere (SPA) model) were evaluated against measurements from two large-scale Amazon drought experiments. Model predictions agreed with the observed C fluxes in the control plots of both experiments, but poorly replicated the responses to the drought treatments. Most notably, with the exception of ED2, the models predicted negligible reductions in aboveground biomass in response to the drought treatments, which was in contrast to an observed c. 20% reduction at both sites. For ED2, the timing of the decline in aboveground biomass was accurate, but the magnitude was too high for one site and too low for the other. Three key findings indicate critical areas for future research and model development. First, the models predicted declines in autotrophic respiration under prolonged drought in contrast to measured increases at one of the sites. Secondly, models lacking a phenological response to drought introduced bias in the sensitivity of canopy productivity and respiration to drought. Thirdly, the phenomenological water-stress functions used by the terrestrial biosphere models to represent the effects of soil moisture on stomatal conductance yielded unrealistic diurnal and seasonal responses to drought.


Carbon Cycle , Carbon/metabolism , Models, Biological , Trees/physiology , Water/physiology , Biomass , Brazil , Carbon Dioxide/metabolism , Circadian Rhythm , Dehydration , Droughts , Ecosystem , Oxygen/metabolism , Photosynthesis/physiology , Plant Leaves/physiology , Soil , Trees/growth & development , Tropical Climate , Wood
9.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120155, 2013 Jun 05.
Article En | MEDLINE | ID: mdl-23610166

A mosaic of protected areas, including indigenous lands, sustainable-use production forests and reserves and strictly protected forests is the cornerstone of conservation in the Amazon, with almost 50 per cent of the region now protected. However, recent research indicates that isolation from direct deforestation or degradation may not be sufficient to maintain the ecological integrity of Amazon forests over the next several decades. Large-scale changes in fire and drought regimes occurring as a result of deforestation and greenhouse gas increases may result in forest degradation, regardless of protected status. How severe or widespread these feedbacks will be is uncertain, but the arc of deforestation in south-southeastern Amazonia appears to be particularly vulnerable owing to high current deforestation rates and ecological sensitivity to climate change. Maintaining forest ecosystem integrity may require significant strengthening of forest conservation on private property, which can in part be accomplished by leveraging existing policy mechanisms.


Conservation of Natural Resources/methods , Ecosystem , Tropical Climate , Brazil , Carbon Dioxide/analysis , Droughts , Environmental Policy , Fires , Greenhouse Effect , Rain , Trees
10.
Glob Chang Biol ; 18(9): 2882-98, 2012 Sep.
Article En | MEDLINE | ID: mdl-24501065

A better understanding of the mechanisms controlling the magnitude and sign of carbon components in tropical forest ecosystems is important for reliable estimation of this important regional component of the global carbon cycle. We used the JULES vegetation model to simulate all components of the carbon balance at six sites along an Andes-Amazon transect across Peru and Brazil and compared the results to published field measurements. In the upper montane zone the model predicted a lack of forest vegetation, indicating a need for better parameterization of the responses of cloud forest vegetation within the model. In the lower montane and lowland zones simulated ecosystem productivity and respiration were predicted with reasonable accuracy, although not always within the error bounds of the observations. Model-predicted carbon use efficiency in this transect surprisingly did not increase with elevation, but remained close to the 'temperate' value 0.5. Upper montane forests were predicted to allocate ~50% of carbon fixation to biomass maintenance and growth, despite available measurements showing that they only allocate ~33%. This may be explained by elevational changes in the balance between growth and maintenance respiration within the forest canopy, as controlled by both temperature- and pressure-mediated processes, which is not yet well represented in current vegetation models.

...