Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Article En | MEDLINE | ID: mdl-26074779

Understanding neural network behavior is essential to shed light on epileptogenesis and seizure propagation. The interconnectivity and plasticity of mammalian limbic and neocortical brain regions provide the substrate for the hypersynchrony and hyperexcitability associated with seizure activity. Recurrent unprovoked seizures are the hallmark of epilepsy, and limbic epilepsy is the most common type of medically-intractable focal epilepsy in adolescents and adults that necessitates surgical evaluation. In this review, we describe the role and relationships among the piriform (PIRC), perirhinal (PRC), and entorhinal cortex (ERC) in seizure-generation and epilepsy. The inherent function, anatomy, and histological composition of these cortical regions are discussed. In addition, the neurotransmitters, intrinsic and extrinsic connections, and the interaction of these regions are described. Furthermore, we provide evidence based on clinical research and animal models that suggest that these cortical regions may act as key seizure-trigger zones and, even, epileptogenesis.


Entorhinal Cortex/physiopathology , Piriform Cortex/physiopathology , Seizures/pathology , Temporal Lobe/physiopathology , Animals , Humans , Nerve Net/physiology
2.
J Neurosci ; 35(12): 5043-50, 2015 Mar 25.
Article En | MEDLINE | ID: mdl-25810533

The perirhinal cortex (PRc) is essential for visual recognition memory, as shown by electrophysiological recordings and lesion studies in a variety of species. However, relatively little is known about the functional contributions of perirhinal subregions. Here we used a systematic mapping approach to identify the critical subregions of PRc through transient, focal blockade of glutamate receptors by intracerebral infusion of kynurenic acid. Nine macaques were tested for visual recognition memory using the delayed nonmatch-to-sample task. We found that inactivation of medial PRc (consisting of Area 35 together with the medial portion of Area 36), but not lateral PRc (the lateral portion of Area 36), resulted in a significant delay-dependent impairment. Significant impairment was observed with 30 and 60 s delays but not with 10 s delays. The magnitude of impairment fell within the range previously reported after PRc lesions. Furthermore, we identified a restricted area located within the most anterior part of medial PRc as critical for this effect. Moreover, we found that focal blockade of either NMDA receptors by the receptor-specific antagonist AP-7 or AMPA receptors by the receptor-specific antagonist NBQX was sufficient to disrupt object recognition memory. The present study expands the knowledge of the role of PRc in recognition memory by identifying a subregion within this area that is critical for this function. Our results also indicate that, like in the rodent, both NMDA and AMPA-mediated transmission contributes to object recognition memory.


Receptors, AMPA/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Recognition, Psychology/physiology , Temporal Lobe/physiology , 2-Amino-5-phosphonovalerate/analogs & derivatives , 2-Amino-5-phosphonovalerate/pharmacology , Animals , Excitatory Amino Acid Antagonists/pharmacology , Kynurenic Acid/pharmacology , Macaca , Male , Quinoxalines/pharmacology , Receptors, AMPA/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Recognition, Psychology/drug effects , Temporal Lobe/drug effects , Time Factors , Visual Perception/drug effects , Visual Perception/physiology
3.
Epilepsy Behav ; 37: 265-9, 2014 Aug.
Article En | MEDLINE | ID: mdl-25112558

Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. However, mounting preclinical evidence suggests that even brief exposure to phenobarbital in the neonatal period can induce neuronal apoptosis, alterations in synaptic development, and long-lasting changes in behavioral functions. In the present report, we treated neonatal rat pups with phenobarbital and evaluated behavior in adulthood. Pups were treated initially with a loading dose (80 mg/kg) on postnatal day (P)7 and with a lower dose (40 mg/kg) on P8 and P9. We examined sensorimotor gating (prepulse inhibition), passive avoidance, and conditioned place preference for cocaine when the animals reached adulthood. Consistent with our previous reports, we found that three days of neonatal exposure to phenobarbital significantly impaired prepulse inhibition compared with vehicle-exposed control animals. Using a step-though passive avoidance paradigm, we found that animals exposed to phenobarbital as neonates and tested as adults showed significant deficits in passive avoidance retention compared with matched controls, indicating impairment in associative memory and/or recall. Finally, we examined place preference conditioning in response to cocaine. Phenobarbital exposure did not alter the normal conditioned place preference associated with cocaine exposure. Our findings expand the profile of behavioral toxicity induced by phenobarbital.


Anticonvulsants/toxicity , Avoidance Learning/drug effects , Cocaine/pharmacology , Phenobarbital/toxicity , Seizures/drug therapy , Sensory Gating/drug effects , Animals , Female , Male , Memory , Rats , Sensory Gating/physiology
4.
Adv Exp Med Biol ; 813: 95-107, 2014.
Article En | MEDLINE | ID: mdl-25012370

Plasticity in the nervous system, whether for establishing connections and networks during development, repairing networks after injury, or modifying connections based on experience, relies primarily on highly coordinated patterns of neural activity. Rhythmic, synchronized bursting of neuronal ensembles is a fundamental component of the activity-dependent plasticity responsible for the wiring and rewiring of neural circuits in the CNS. It is therefore not surprising that the architecture of the CNS supports the generation of highly synchronized bursts of neuronal activity in non-pathological conditions, even though the activity resembles the ictal and interictal events that are the hallmark symptoms of epilepsy. To prevent such natural epileptiform events from becoming pathological, multiple layers of homeostatic control operate on cellular and network levels. Many data on plastic changes that occur in different brain structures during the processes by which the epileptogenic aggregate is constituted have been accumulated but their role in counteracting or promoting such processes is still controversial. In this chapter we will review experimental and clinical evidence on the role of neural plasticity in the development of epilepsy. We will address questions such as: is epilepsy a progressive disorder? What do we know about mechanism(s) accounting for progression? Have we reliable biomarkers of epilepsy-related plastic processes? Do seizure-associated plastic changes protect against injury and aid in recovery? As a necessary premise we will consider the value of seizure-like activity in the context of normal neural development.


Epilepsy/physiopathology , Neuronal Plasticity , Humans , Models, Biological
5.
Med Educ Online ; 19: 22623, 2014.
Article En | MEDLINE | ID: mdl-25005356

A key facet of professional development is the formation of professional identity. At its most basic level, professional identity for a scientist centers on mastery of a discipline and the development of research skills during doctoral training. To develop a broader understanding of professional identity in the context of doctoral training, the Carnegie Initiative on the Doctorate (CID) ran a multi-institutional study from 2001 to 2005. A key outcome of the CID was the development of the concept of 'stewards of the discipline'. The Interdisciplinary Program in Neuroscience (IPN) at Georgetown University participated in CID from 2003 to 2005. Here, we describe the IPN and highlight the programmatic developments resulting from participation in the CID. In particular, we emphasize programmatic activities that are designed to promote professional skills in parallel with scientific development. We describe activities in the domains of leadership, communication, teaching, public outreach, ethics, collaboration, and mentorship. Finally, we provide data that demonstrate that traditional metrics of academic success are not adversely affected by the inclusion of professional development activities in the curricula. By incorporating these seven 'professional development' activities into the required coursework and dissertation research experience, the IPN motivates students to become stewards of the discipline.


Cooperative Behavior , Interprofessional Relations , Neurosciences/education , Professional Role , Universities/organization & administration , Communication , Female , Humans , Leadership , Male , Mentors , Organizational Case Studies , Public Relations , Research , Teaching
6.
Proc Natl Acad Sci U S A ; 111(11): 4315-20, 2014 Mar 18.
Article En | MEDLINE | ID: mdl-24591610

The hippocampus has a well-documented role for spatial navigation across species, but its role for spatial memory in nonnavigational tasks is uncertain. In particular, when monkeys are tested in tasks that do not require navigation, spatial memory seems unaffected by lesions of the hippocampus. However, the interpretation of these results is compromised by long-term compensatory adaptation occurring in the days and weeks after lesions. To test the hypothesis that hippocampus is necessary for nonnavigational spatial memory, we selected a technique that avoids long-term compensatory adaptation. We transiently disrupted hippocampal function acutely at the time of testing by microinfusion of the glutamate receptor antagonist kynurenate. Animals were tested on a self-ordered spatial memory task, the Hamilton Search Task. In the task, animals are presented with an array of eight boxes, each containing a food reinforcer; one box may be opened per trial, with trials separated by a delay. Only the spatial location of the boxes serves as a cue to solve the task. The optimal strategy is to open each box once without returning to previously visited locations. Transient inactivation of hippocampus reduced performance to chance levels in a delay-dependent manner. In contrast, no deficits were seen when boxes were marked with nonspatial cues (color). These results clearly document a role for hippocampus in nonnavigational spatial memory in macaques and demonstrate the efficacy of pharmacological inactivation of this structure in this species. Our data bring the role of the hippocampus in monkeys into alignment with the broader framework of hippocampal function.


Hippocampus/physiopathology , Macaca/physiology , Memory Disorders/physiopathology , Adaptation, Physiological/physiology , Analysis of Variance , Animals , Appetitive Behavior/drug effects , Hippocampus/drug effects , Kynurenic Acid/toxicity , Magnetic Resonance Imaging , Memory Disorders/chemically induced , Neuropsychological Tests , Psychomotor Performance/drug effects
7.
PLoS One ; 8(12): e81401, 2013.
Article En | MEDLINE | ID: mdl-24324691

Neurosurgical therapeutic interventions include components that are presumed to be therapeutically inert, such as craniotomy and electrode implantation. Because these procedures may themselves exert neuroactive actions, with anecdotal evidence suggesting that craniotomy and electrode placement may have a particularly significant impact on epileptic seizures, the importance of their inclusion in sham control groups has become more compelling. Here we set out to test the hypothesis that craniotomy alone is sufficient to alter experimental seizures in rats. We tested adult male rats for seizures evoked by pentylenetetrazole (70 mg/kg) between 3 and 20 days following placement of bilateral craniotomies (either 2.5 or 3.5 mm in diameter) in the parietal bone of the skull, without penetrating the dura. Control (sham-operated) animals underwent anesthesia and surgery without craniotomy. We found that craniotomy significantly decreased the severity of experimental seizures on postoperative days 3, 6, and 10; this effect was dependent on the size of craniotomy. Animals with craniotomies returned to control seizure severity by 20 days post-craniotomy. These data support the hypothesis that damage to the skull is sufficient to cause a significant alteration in seizure susceptibility over an extended postoperative period, and indicate that this damage should not be considered neurologically inert.


Craniotomy/adverse effects , Seizures/chemically induced , Seizures/etiology , Animals , Male , Pentylenetetrazole , Rats , Rats, Sprague-Dawley , Skull/surgery
8.
Epilepsy Res ; 107(3): 217-23, 2013 Dec.
Article En | MEDLINE | ID: mdl-24206906

Phenobarbital is the most commonly utilized drug for neonatal seizures. However, questions regarding safety and efficacy of this drug make it particularly compelling to identify adjunct therapies that could boost therapeutic benefit. One potential adjunct therapy is melatonin. Melatonin is used clinically in neonatal and pediatric populations, and moreover, it exerts anticonvulsant actions in adult rats. However, it has not been previously evaluated for anticonvulsant effects in neonatal rats. Here, we tested the hypothesis that melatonin would exert anticonvulsant effects, either alone, or in combination with phenobarbital. Postnatal day (P)7 rats were treated with phenobarbital (0-40mg/kg) and/or melatonin (0-80mg/kg) prior to chemoconvulsant challenge with pentylenetetrazole (100mg/kg). We found that melatonin significantly potentiated the anticonvulsant efficacy of phenobarbital, but did not exert anticonvulsant effects on its own. These data provide additional evidence for the further examination of melatonin as an adjunct therapy in neonatal/pediatric epilepsy.


Anticonvulsants/administration & dosage , Melatonin/administration & dosage , Phenobarbital/administration & dosage , Seizures/drug therapy , Animals , Animals, Newborn , Dose-Response Relationship, Drug , Drug Synergism , Drug Therapy, Combination , Female , Rats , Rats, Sprague-Dawley , Seizures/physiopathology
9.
J Neurosci ; 33(1): 150-5, 2013 Jan 02.
Article En | MEDLINE | ID: mdl-23283329

Stimulation of the intermediate and deep layers of superior colliculus (DLSC) in rodents evokes both orienting/pursuit (approach) and avoidance/flight (defense) responses (Dean et al., 1989). These two classes of response are subserved by distinct output projections associated with lateral (approach) and medial (defense) DLSC (Comoli et al., 2012). In non-human primates, DLSC has been examined only with respect to orienting/approach behaviors, especially eye movements, and defense-like behaviors have not been reported. Here we examined the profile of behavioral responses evoked by activation of DLSC by unilateral intracerebral infusions of the GABA(A) receptor antagonist, bicuculline methiodide (BIC), in nine freely moving macaques. Across animals, the most consistently evoked behavior was cowering (all animals), followed by increased vocalization and escape-like behaviors (seven animals), and attack of objects (three animals). The effects of BIC were dose-dependent within the range 2.5-14 nmol (threshold dose of 4.6 nmol). The behaviors and their latencies to onset did not vary across different infusion sites within DLSC. Cowering and escape-like behaviors resembled the defense-like responses reported after DLSC stimulation in rats, but in the macaques these responses were evoked from both medial and lateral sites within DLSC. Our findings are unexpected in the context of an earlier theoretical perspective (Dean et al., 1989) that emphasized a preferential role of the primate DLSC for approach rather than defensive responses. Our data provide the first evidence for induction of defense-like behaviors by activation of DLSC in monkeys, suggesting that the role of DLSC in responding to threats is conserved across species.


Behavior, Animal/drug effects , Neurons/drug effects , Superior Colliculi/drug effects , Vocalization, Animal/drug effects , Animals , Behavior, Animal/physiology , Bicuculline/pharmacology , Dose-Response Relationship, Drug , Female , GABA-A Receptor Antagonists/pharmacology , Macaca mulatta , Macaca nemestrina , Male , Neurons/physiology , Superior Colliculi/physiology , Vocalization, Animal/physiology
10.
Mov Disord ; 28(4): 460-8, 2013 Apr.
Article En | MEDLINE | ID: mdl-23115112

GABAergic neurons of the substantia nigra pars reticulata (SNpr) and globus pallidus pars interna (GPi) constitute the output pathways of the basal ganglia. In monkeys, choreiform limb dyskinesias have been described after inhibition of the GPi, but not the SNpr. Given the anatomical and functional similarities between these structures, we hypothesized that choreiform dyskinesias could be evoked by inhibition of an appropriate region within the SNpr. The GABAA receptor agonist, muscimol, was infused into various sites within the SNpr and the adjacent STN of freely moving macaques. The effect of the GABAA antagonist, bicuculline (BIC), was also examined. Muscimol (MUS) in SNpr evoked the following: (1) choreiform dyskinesias of the contralateral arm and/or leg from central and lateral sites; (2) contralaterally directed torticollis from central and posterior sites; and (3) contraversive quadrupedal rotation from anterior and lateral sites. MUS infusions into the adjacent SN pars compacta or STN were without effect, ruling out a contribution of drug spread to adjacent structures. BIC in SNpr induced ipsiversive postures without choreiform dyskinesia or torticollis, whereas in the STN, it evoked ballistic movements. This is the first report of choreiform dyskinesia evoked by inhibition of the SNpr. This highly site-specific effect was obtained from a restricted region within the SNpr distinct from that responsible for inducing torticollis. These results suggest that overactivity of different SNpr outputs mediates choreiform dyskinesia and torticollis. These abnormalities are symptoms of dystonia, Huntington's disease, and iatrogenic dyskinesias, suggesting that these conditions may result, in part, from a loss of function in SNpr efferent projections.


Dyskinesias/metabolism , GABA Agonists/pharmacology , Muscimol/pharmacology , Substantia Nigra/drug effects , Animals , Basal Ganglia/drug effects , GABA Antagonists/pharmacology , Globus Pallidus/drug effects , Globus Pallidus/physiology , Macaca , Movement/drug effects , Neurons/drug effects , Neurons/metabolism , Substantia Nigra/physiology , Torticollis/chemically induced
11.
J Neurosci ; 32(38): 13326-32, 2012 Sep 19.
Article En | MEDLINE | ID: mdl-22993447

Cervical dystonia (CD; spasmodic torticollis) can be evoked by inhibition of substantia nigra pars reticulata (SNpr) in the nonhuman primate (Burbaud et al., 1998; Dybdal et al., 2012). Suppression of GABAergic neurons that project from SNpr results in the disinhibition of the targets to which these neurons project. It therefore should be possible to prevent CD by inhibition of the appropriate nigral target region(s). Here we tested the hypothesis that the deep and intermediate layers of the superior colliculus (DLSC), a key target of nigral projections, are required for the emergence of CD. To test this hypothesis, we pretreated the DLSC of four macaques with the GABA(A) agonist muscimol to determine whether this treatment would prevent CD evoked by muscimol infusions in SNpr. Our data supported this hypothesis: inhibition of DLSC attenuated CD evoked by muscimol in SNpr in all four animals. In two of the four subjects, quadrupedal rotations were evoked by muscimol application into SNpr sites that were distinct from those that induced dystonia. We found that inhibition of DLSC did not significantly alter quadrupedal rotations, suggesting that this response is dissociable from the SNpr-evoked CD. Our results are the first to demonstrate a role of DLSC in mediating the expression of CD. Furthermore, these data reveal a functional relationship between SNpr and DLSC in regulating posture and movement in the nonhuman primate, raising the possibility that the nigrotectal pathway has potential as a target for therapeutic interventions for CD.


Substantia Nigra/physiopathology , Superior Colliculi/physiology , Torticollis/pathology , Torticollis/prevention & control , Analysis of Variance , Animals , Bicuculline/pharmacology , Bicuculline/therapeutic use , Disease Models, Animal , Drug Administration Routes , Female , GABA-A Receptor Agonists/therapeutic use , GABA-A Receptor Agonists/toxicity , GABA-A Receptor Antagonists/pharmacology , GABA-A Receptor Antagonists/therapeutic use , Head Movements/drug effects , Macaca mulatta , Magnetic Resonance Imaging , Male , Movement/drug effects , Muscimol/therapeutic use , Muscimol/toxicity , Postural Balance/drug effects , Sensation Disorders/drug therapy , Sensation Disorders/etiology , Substantia Nigra/drug effects , Superior Colliculi/drug effects , Torticollis/chemically induced , Torticollis/physiopathology
12.
Behav Neurosci ; 126(4): 563-74, 2012 Aug.
Article En | MEDLINE | ID: mdl-22845705

Basolateral amygdala (BLA) function is critical for flexible, goal-directed behavior, including performance on reinforcer devaluation tasks. Here we tested, in rats, the hypothesis that BLA is critical for conditioned reinforcer devaluation during the period when the primary reinforcer (food) is being devalued (by feeding it to satiety), but not thereafter for guiding behavioral choices. We used a spatially independent task that used two visual cues, each predicting one of two foods. An instrumental action (lever press) was required for reinforcer delivery. After training, rats received BLA or sham lesions, or cannulae implanted in BLA. Under control conditions (sham lesions, saline infusions), devaluation of one food significantly decreased responding to the cue associated with that food, when both cues were presented simultaneously during extinction. BLA lesions impaired this devaluation effect. Transient inactivation of BLA by microinfusion of the γ-aminobutyric acid receptor type A agonist muscimol resulted in an impairment only when BLA was inactivated during satiation. When muscimol was infused after satiation and therefore, BLA was inactivated only during the choice test, rats showed no impairment. Thus, BLA is necessary for registering or updating cues to reflect updated reinforcer values, but not for guiding choices once the value has been updated. Our results are the first to describe the contribution of rat BLA to specific components of reinforcer devaluation and are the first to show impairment in reinforcer devaluation following transient inactivation in the rat.


Amygdala/physiology , Choice Behavior/physiology , Conditioning, Operant/physiology , Extinction, Psychological/physiology , Reinforcement, Psychology , Amygdala/drug effects , Amygdala/injuries , Analysis of Variance , Animals , Choice Behavior/drug effects , Conditioning, Operant/drug effects , Cues , Excitatory Amino Acid Agonists/toxicity , Extinction, Psychological/drug effects , Food , Functional Laterality/drug effects , Functional Laterality/physiology , GABA-A Receptor Agonists/pharmacology , Male , Muscimol/pharmacology , N-Methylaspartate/toxicity , Rats , Rats, Long-Evans
13.
J Biomed Mater Res A ; 100(12): 3455-62, 2012 Dec.
Article En | MEDLINE | ID: mdl-22821813

Stimulation and recording of the in vivo electrical activity of neurons are critical functions in contemporary biomedical research and in treatment of patients with neurological disorders. The electrodes presently in use tend to exhibit short effective lifespans due to degradation of signal transmission resulting from the tissue response at the electrode-brain interface, with signal throughput suffering most at the low frequencies relevant for biosignals. To overcome these limitations, new electrode designs to minimize tissue responses, including conducting polymers (CPs) have been explored. Here, we report the short-term histocompatibility and signal throughput results comparing platinum and CP-modified platinum electrodes in a Sprague-Dawley rat model. Two of the polymers tested elicited significantly decreased astrocyte responses relative to platinum. These polymers also showed improved signal throughput at low frequencies and comparable signal-to-noise ratios during targeted intracranial electroencephalograms. These results suggest that CP electrodes may present viable alternatives to the metal electrodes that are currently in use.


Bridged Bicyclo Compounds, Heterocyclic/chemistry , Carbazoles/chemistry , Electrodes, Implanted , Materials Testing , Polymers/chemistry , Pyrroles/chemistry , Signal Processing, Computer-Assisted , Thiophenes/chemistry , Animals , Astrocytes/physiology , Electroencephalography , Microglia/physiology , Rats , Rats, Sprague-Dawley
14.
Ann Neurol ; 72(3): 363-72, 2012 Sep.
Article En | MEDLINE | ID: mdl-22581672

OBJECTIVE: Drug exposure during critical periods of brain development may adversely affect nervous system function, posing a challenge for treating infants. This is of particular concern for treating neonatal seizures, as early life exposure to drugs such as phenobarbital is associated with adverse neurological outcomes in patients and induction of neuronal apoptosis in animal models. The functional significance of the preclinical neurotoxicity has been questioned due to the absence of evidence for functional impairment associated with drug-induced developmental apoptosis. METHODS: We used patch-clamp recordings to examine functional synaptic maturation in striatal medium spiny neurons from neonatal rats exposed to antiepileptic drugs with proapoptotic action (phenobarbital, phenytoin, lamotrigine) and without proapoptotic action (levetiracetam). Phenobarbital-exposed rats were also assessed for reversal learning at weaning. RESULTS: Recordings from control animals revealed increased inhibitory and excitatory synaptic connectivity between postnatal day (P)10 and P18. This maturation was absent in rats exposed at P7 to a single dose of phenobarbital, phenytoin, or lamotrigine. Additionally, phenobarbital exposure impaired striatal-mediated behavior on P25. Neuroprotective pretreatment with melatonin, which prevents drug-induced neurodevelopmental apoptosis, prevented the drug-induced disruption in maturation. Levetiracetam was found not to disrupt synaptic development. INTERPRETATION: Our results provide the first evidence that exposure to antiepileptic drugs during a sensitive postnatal period impairs physiological maturation of synapses in neurons that survive the initial drug insult. These findings suggest a mechanism by which early life exposure to antiepileptic drugs can impact cognitive and behavioral outcomes, underscoring the need to identify therapies that control seizures without compromising synaptic maturation.


Anticonvulsants/pharmacology , Corpus Striatum/cytology , Corpus Striatum/growth & development , Neurons/drug effects , Synapses/drug effects , Age Factors , Animals , Animals, Newborn , Caspase 3/metabolism , Electric Stimulation , Excitatory Postsynaptic Potentials/drug effects , Female , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Lysine/analogs & derivatives , Lysine/metabolism , Maze Learning/drug effects , Neurons/metabolism , Patch-Clamp Techniques , Pregnancy , Rats, Sprague-Dawley , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology
15.
Epilepsy Res ; 101(1-2): 135-40, 2012 Aug.
Article En | MEDLINE | ID: mdl-22483539

Retigabine is a new-generation antiepileptic drug that exerts therapeutic action through the activation of KCNQ channel dependent M-type potassium currents. While retigabine has been extensively studied in adult animals using a wide variety of seizure models, its effects in developing animals have not been examined. There has only been one previous report of retigabine efficacy in juvenile rats (Mazarati et al., 2008), which examined efficacy against kindled seizures and did not examine ages younger than postnatal day (P) 14. To determine the efficacy of retigabine during brain development we pretreated rats with retigabine (0-30 mg/kg) at three ages corresponding to the neonatal period through late childhood/early adolescence (i.e., P7, P14, or P25). Seizures were induced 30 min later using a chemoconvulsant (pentylenetetrazol, PTZ) model, which has been widely used to determine anticonvulsant efficacy of many other antiepileptic drugs in neonatal animals. In a dose and age-dependent manner, retigabine reduced the severity of PTZ evoked seizures, increased the latency to seizure onset, and decreased the incidence of full maximal seizures. The minimum effective dose was found to be 5mg/kg for P7 animals, 2.5mg/kg for P14 animals, and 1mg/kg for P25 animals. These findings allow a direct comparison between retigabine and previously studied antiepileptic drugs against PTZ seizures during development, and provide the first report of the effective dose range of retigabine in neonatal animals.


Anticonvulsants/therapeutic use , Carbamates/therapeutic use , Epilepsy/prevention & control , Phenylenediamines/therapeutic use , Aging/physiology , Animals , Animals, Newborn , Convulsants , Dose-Response Relationship, Drug , Epilepsy/chemically induced , Female , Injections, Subcutaneous , Kindling, Neurologic/drug effects , Pentylenetetrazole , Pregnancy , Rats , Rats, Sprague-Dawley , Seizures/physiopathology , Seizures/prevention & control
16.
J Pharmacol Exp Ther ; 340(3): 558-66, 2012 Mar.
Article En | MEDLINE | ID: mdl-22129597

Despite the potent proapoptotic effect of several antiepileptic drugs (AEDs) in developmental rodent models, little is known about the long-term impact of exposure during brain development. Clinically, this is of growing concern. To determine the behavioral consequences of such exposure, we examined phenobarbital, phenytoin, and lamotrigine for their effects on adult behaviors after administration to neonatal rats throughout the second postnatal week. AED treatment from postnatal days 7 to 13 resulted in adult deficits in spatial learning in the Morris water maze and decreased social exploration for all drugs tested. Phenobarbital exposure led to deficits in cued fear conditioning, risk assessment in the elevated plus maze, and sensorimotor gating as measured by prepulse inhibition, but it did not affect motor coordination on the rotorod task. In contrast, phenytoin and lamotrigine exposure led to impaired rotorod performance, but no deficits in sensorimotor gating. Phenytoin, but not lamotrigine or phenobarbital, increased exploration in the open field. Phenytoin and phenobarbital, but not lamotrigine, disrupted cued fear conditioning. These results indicate that AED administration during a limited sensitive postnatal period is sufficient to cause a range of behavioral deficits later in life, and the specific profile of behavioral deficits varies across drugs. The differences in the long-term outcomes associated with the three AEDs examined are not predicted by either the mechanism of AED action or the proapoptotic effect of the drugs. Our findings suggest that a history of AED therapy during development must be considered as a variable when assessing later-life cognitive and psychiatric outcomes.


Anticonvulsants/toxicity , Brain/drug effects , Cognition/drug effects , Emotions/drug effects , Motor Activity/drug effects , Animals , Animals, Newborn , Body Weight/drug effects , Fear , Female , Maze Learning/drug effects , Pregnancy , Rats , Social Behavior
17.
Epilepsia ; 52(12): e207-11, 2011 Dec.
Article En | MEDLINE | ID: mdl-22050285

The induction of neuronal apoptosis throughout many regions of the developing rat brain by phenobarbital and phenytoin, two drugs commonly used for the treatment of neonatal seizures, has been well documented. However, several limbic regions have not been included in previous analyses. Because drug-induced damage to limbic brain regions in infancy could contribute to emotional and psychiatric sequelae, it is critical to determine the extent to which these regions are vulnerable to developmental neurotoxicity. To evaluate the impact of antiepileptic drug (AED) exposure on limbic nuclei, we treated postnatal day 7 rat pups with phenobarbital, phenytoin, carbamazepine, or vehicle, and examined nucleus accumbens, septum, amygdala, piriform cortex, and frontal cortex for cell death. Histologic sections were processed using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay to label apoptotic cells. Nucleus accumbens displayed the highest level of baseline cell death (vehicle group), as well as the greatest net increase in cell death following phenobarbital or phenytoin. Phenobarbital exposure resulted in a significant increase in cell death in all brain regions, whereas phenytoin exposure increased cell death only in the nucleus accumbens. Carbamazepine was without effect on cell death in any brain region analyzed, suggesting that the neurotoxicity observed is not an inherent feature of AED action. Our findings demonstrate pronounced cell death in several important regions of the rat limbic system following neonatal administration of phenobarbital, the first-line treatment for neonatal seizures in humans. These findings raise the possibility that AED exposure in infancy may contribute to adverse neuropsychiatric outcomes later in life.


Anticonvulsants/adverse effects , Limbic System/drug effects , Analysis of Variance , Animals , Animals, Newborn , Cell Count , Cell Death/drug effects , Female , In Situ Nick-End Labeling/methods , Male , Rats , Rats, Sprague-Dawley
18.
J Neurosci ; 31(42): 15128-35, 2011 Oct 19.
Article En | MEDLINE | ID: mdl-22016546

The orbitofrontal cortex (OFC) and its interactions with the basolateral amygdala (BLA) are critical for goal-directed behavior, especially for adapting to changes in reward value. Here we used a reinforcer devaluation paradigm to investigate the contribution of OFC to this behavior in four macaques. Subjects that had formed associations between objects and two different primary reinforcers (foods) were presented with choices of objects overlying the two different foods. When one of the two foods was devalued by selective satiation, the subjects shifted their choices toward the objects that represented the nonsated food reward (devaluation effect). Transient inactivation of OFC by infusions of the GABA(A) receptor agonist muscimol into area 13 blocked the devaluation effect: the monkeys did not reduce their selection of objects associated with the devalued food. This effect was observed when OFC was inactivated during both satiation and the choice test, and during the choice test only. This supports our hypothesis that OFC activity is required during the postsatiety object choice period to guide the selection of objects. This finding sharply contrasts with the role of BLA in the same devaluation process (Wellman et al., 2005). Whereas activity in BLA was required during the selective satiation procedure, it was not necessary for guiding the subsequent object choice. Our results are the first to demonstrate that transient inactivation of OFC is sufficient to disrupt the devaluation effect, and to document a role for OFC distinct from that of BLA for the conditioned reinforcer devaluation process in monkeys.


Conditioning, Operant/physiology , Extinction, Psychological/physiology , Prefrontal Cortex/physiology , Reinforcement, Psychology , Analysis of Variance , Animals , Conditioning, Operant/drug effects , Discrimination, Psychological/drug effects , Discrimination, Psychological/physiology , Eating/drug effects , Extinction, Psychological/drug effects , Feeding Behavior/drug effects , Female , GABA-A Receptor Agonists/administration & dosage , Imaging, Three-Dimensional , Macaca mulatta , Macaca nemestrina , Magnetic Resonance Imaging , Male , Muscimol/administration & dosage , Prefrontal Cortex/drug effects , Satiation/drug effects , Satiation/physiology , Time Factors
19.
J Neurosci ; 31(21): 7648-56, 2011 May 25.
Article En | MEDLINE | ID: mdl-21613478

The phosphorylated form of histone H2A.X (γ-H2AX) is a well documented early, sensitive, and selective marker of DNA double-strand breaks (DSBs). Previously, we found that excessive glutamatergic activity increased γ-H2AX in neurons in vitro. Here, we evaluated γ-H2AX formation in the adult rat brain following neuronal excitation evoked by seizure activity in vivo. We found that brief, repeated electroconvulsive shock (ECS)-induced seizures (three individual seizures within 60 min) did not trigger an increase γ-H2AX immunostaining. In contrast, a cluster of 5-7 individual seizures evoked by kainic acid (KA) rapidly (within 30 min) induced γ-H2AX in multiple neuronal populations in hippocampus and entorhinal cortex. This duration of seizure activity is well below threshold for induction of neuronal cell death, indicating that the γ-H2AX increase occurs in response to sublethal insults. Moreover, an increase in γ-H2AX was seen in dentate granule cells, which are resistant to cell death caused by KA-evoked seizures. With as little as a 5 min duration of status epilepticus (SE), γ-H2AX increased in CA1, CA3, and entorhinal cortex to a greater extent than that observed after the clusters of individual seizures, with still greater increases after 120 min of SE. Our findings provide the first direct demonstration that DNA DSB damage occurs in vivo in the brain following seizures. Furthermore, we found that the γ-H2AX increase caused by 120 min of SE was prevented by neuroprotective preconditioning with ECS-evoked seizures. This demonstrates that DNA DSB damage is an especially sensitive indicator of neuronal endangerment and that it is responsive to neuroprotective intervention.


Brain/metabolism , Histones/biosynthesis , Neurons/metabolism , Phosphoproteins/biosynthesis , Seizures/metabolism , Age Factors , Animals , Biomarkers/metabolism , Brain/pathology , Electroshock/adverse effects , Histones/genetics , Histones/metabolism , Male , Neurons/pathology , Phosphorylation/physiology , Random Allocation , Rats , Rats, Sprague-Dawley , Seizures/pathology
20.
Epilepsia ; 52(4): e20-2, 2011 Apr.
Article En | MEDLINE | ID: mdl-21463268

In view of previous reports of changes in seizure susceptibility in adult rats exposed to phenobarbital or diazepam as pups, we examined the effects of early life exposure to lamotrigine and phenytoin, two commonly used antiepileptic drugs (AEDs), for their effect on seizure threshold in adult rats. We found that pups exposed to lamotrigine for 6 days during the second postnatal week had a significantly lower threshold for pentylenetetrazole-evoked seizures when tested as adults. In contrast, phenytoin exposure during the second postnatal week was without a significant effect on seizure threshold in adults. Seizure scores at threshold were comparable across all groups tested. The dose of lamotrigine used in our study (20 mg/kg) was below that required to cause developmental neuronal apoptosis, whereas the dose of phenytoin used (50 mg/kg) was above that required for developmental neurotoxicity. Therefore, our findings suggest that neurodevelopmental alterations in seizure susceptibility may occur via mechanisms that are independent of those responsible for neural injury or teratogenesis. Our findings support the possibility that therapy with certain AEDs during pregnancy or infancy may alter seizure susceptibility later in life, a possibility that should be taken into account when examining early life factors that contribute to seizure susceptibility in adulthood.


Anticonvulsants/toxicity , Epilepsy/drug therapy , Phenytoin/toxicity , Triazines/toxicity , Aging/physiology , Animals , Disease Models, Animal , Epilepsy/chemically induced , Epilepsy/physiopathology , Female , Lamotrigine , Male , Pregnancy , Rats , Rats, Sprague-Dawley
...