Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Placenta ; 150: 22-30, 2024 May.
Article En | MEDLINE | ID: mdl-38581971

INTRODUCTION: During pregnancy, the dynamic metabolic demands for fetal growth require a continuous supply of essential metabolites. Understanding maternal metabolome changes during gestation is crucial for predicting disease risks in neonates. METHODS: The study aimed to characterize the placental and amniotic fluid (AF) metabolomes during gestation in rats at gestational days GD-13 and 19 reflecting the end of the embryonic and fetal periods, respectively, and the maternal plasma, using metabolomics (LC-MS) and chemometrics. The objective was to highlight, through univariate and multivariate analyses, the complementarity of the data obtained from these different biological matrices. RESULTS: The biological matrix had more impact on the metabolome composition than the gestational stage. The placental and AF metabolomes showed specific metabolome evolving over the two gestational stages. Analyzing the three targeted metabolomes revealed evolving pathways in arginine and proline metabolism/glutathione metabolism and phenylalanine metabolism; purine metabolism; and carbohydrate metabolism. Significantly, lipid metabolism in the placenta exhibited substantial changes with higher levels of certain phosphatidylethanolamine and sphingomyelins at GD19 while some cholesteryl esters and some glycosphingolipids levels being in higher levels at GD13. DISCUSSION: These data highlight the metabolic gradients (mainly in placenta, also in AF, but only a few in plasma) observed through embryonic patterning and organ development during mid-to late gestation.


Amniotic Fluid , Metabolomics , Placenta , Female , Animals , Pregnancy , Amniotic Fluid/metabolism , Amniotic Fluid/chemistry , Placenta/metabolism , Metabolomics/methods , Rats , Metabolome , Fetus/metabolism
2.
Mol Psychiatry ; 28(2): 801-809, 2023 02.
Article En | MEDLINE | ID: mdl-36434055

Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose pathophysiological mechanisms are still unclear. Hypotheses suggest a role for glutamate dysfunctions in ASD development, but clinical studies investigating brain and peripheral glutamate levels showed heterogenous results leading to hypo- and hyper-glutamatergic hypotheses of ASD. Recently, studies proposed the implication of elevated mGluR5 densities in brain areas in the pathophysiology of ASD. Thus, our objective was to characterize glutamate dysfunctions in adult subjects with ASD by quantifying (1) glutamate levels in the cingulate cortex and periphery using proton magnetic resonance spectroscopy and metabolomics, and (2) mGluR5 brain density in this population and in a validated animal model of ASD (prenatal exposure to valproate) at developmental stages corresponding to childhood and adolescence in humans using positron emission tomography. No modifications in cingulate Glu levels were observed between individuals with ASD and controls further supporting the difficulty to evaluate modifications in excitatory transmission using spectroscopy in this population, and the complexity of its glutamate-related changes. Our imaging results showed an overall increased density in mGluR5 in adults with ASD, that was only observed mostly subcortically in adolescent male rats prenatally exposed to valproic acid, and not detected in the stage corresponding to childhood in the same animals. This suggest that clinical changes in mGluR5 density could reflect the adaptation of the glutamatergic dysfunctions occurring earlier rather than being key to the pathophysiology of ASD.


Autism Spectrum Disorder , Autistic Disorder , Humans , Pregnancy , Female , Adolescent , Adult , Male , Rats , Animals , Child , Glutamic Acid , Brain , Valproic Acid , Synapses
3.
Front Syst Neurosci ; 16: 1009626, 2022.
Article En | MEDLINE | ID: mdl-36567755

Introduction: The ventral pallidum (VP) is central in the limbic Basal Ganglia circuit, controlling both appetitive (approach) and aversive (avoidance) motivated behaviors. Nevertheless, VP involvement in pathological aspects remains unclear, especially in the behavioral expression of different motivational dysfunctions. This study aimed to investigate how the VP contributes to the expression of abnormal behaviors via opposite GABAergic dysfunctions. Methods: Opposite GABAergic dysfunctions were induced by injecting muscimol (a GABAA agonist) and bicuculline (a GABAA antagonist) into monkeys. We determined the effects of both substances on self-initiated behaviors in lab-chair and in free-moving home-cage contexts in six monkeys, and in two animals performing an approach-avoidance task in appetitive and aversive contexts. Results: While the self-initiated behaviors induced by bicuculline injections in VP were characterized by compulsive behaviors such as repetitive grooming and self-biting, muscimol injections induced impulsive behaviors including limb movements in a lab-chair context and exploration behaviors in a free-moving context. More specific behavioral effects were observed in the approach-avoidance task. The muscimol injections induced premature responses and erroneous screen touches, which characterize impulsive and attention disorders, while the bicuculline injections into the VP increased passive avoidance (non-initiated action) and task-escape in an aversive context, suggesting an anxiety disorder. Conclusions: These results show that activating or blocking GABAergic transmission in the VP impairs motivated behaviors. Furthermore, the behavioral expressions produced by these opposite disturbances show that the VP could be involved in anxiety-driven compulsive disorders, such as OCD, as well as in impulsive disorders motivated by attention deficits or reward-seeking, as seen in ADHD or impulse control disorders.

4.
Transl Psychiatry ; 12(1): 356, 2022 09 01.
Article En | MEDLINE | ID: mdl-36050307

The different depressive disorders that exist can take root at adolescence. For instance, some functional and structural changes in several brain regions have been observed from adolescence in subjects that display either high vulnerability to depressive symptoms or subthreshold depression. For instance, adolescents with depressive disorder have been shown to exhibit hyperactivity in hippocampus, amygdala and prefrontal cortex as well as volume reductions in hippocampus and amygdala (prefrontal cortex showing more variable results). However, no animal model of adolescent subthreshold depression has been developed so far. Our objective was to design an animal model of adolescent subthreshold depression and to characterize the neural changes associated to this phenotype. For this purpose, we used adolescent Swiss mice that were evaluated on 4 tests assessing cognitive abilities (Morris water maze), anhedonia (sucrose preference), anxiety (open-field) and stress-coping strategies (forced swim test) at postnatal day (PND) 28-35. In order to identify neural alterations associated to behavioral profiles, we assessed brain resting state metabolic activity in vivo using 18F-FDG PET imaging at PND 37. We selected three profiles of mice distinguished in a composite Z-score computed from performances in the behavioral tests: High, Intermediate and Low Depressive Risk (HDR, IDR and LDR). Compared to both IDR and LDR, HDR mice were characterized by passive stress-coping behaviors, low cognition and high anhedonia and anxiety and were associated with significant changes of 18F-FDG uptakes in several cortical and subcortical areas including prelimbic cortex, infralimbic cortex, nucleus accumbens, amygdala, periaqueductal gray and superior colliculus, all displaying higher metabolic activity, while only the thalamus was associated with lower metabolic activity (compared to IDR). LDR displayed an opposing behavioral phenotype and were associated with significant changes of 18F-FDG uptakes in the dorsal striatum and thalamus that both exhibited markedly lower metabolic activity in LDR. In conclusion, our study revealed changes in metabolic activities that can represent neural signatures for behavioral profiles predicting subthreshold depression at adolescence in a mouse model.


Depression , Fluorodeoxyglucose F18 , Anhedonia , Animals , Anxiety/diagnostic imaging , Disease Models, Animal , Humans , Mice , Positron-Emission Tomography
5.
J Cereb Blood Flow Metab ; 42(12): 2216-2229, 2022 12.
Article En | MEDLINE | ID: mdl-35945692

Despite an apparently silent imaging, some patients with mild traumatic brain injury (TBI) experience cognitive dysfunctions, which may persist chronically. Brain changes responsible for these dysfunctions are unclear and commonly overlooked. It is thus crucial to increase our understanding of the mechanisms linking the initial event to the functional deficits, and to provide objective evidence of brain tissue alterations underpinning these deficits. We first set up a murine model of closed-head controlled cortical impact, which provoked persistent cognitive and sensorimotor deficits, despite no evidence of brain contusion or bleeding on MRI, thus recapitulating features of mild TBI. Molecular MRI for P-selectin, a key adhesion molecule, detected no sign of cerebrovascular inflammation after mild TBI, as confirmed by immunostainings. By contrast, in vivo PET imaging with the TSPO ligand [18F]DPA-714 demonstrated persisting signs of neuroinflammation in the ipsilateral cortex and hippocampus after mild TBI. Interestingly, immunohistochemical analyses confirmed these spatio-temporal profiles, showing a robust parenchymal astrogliosis and microgliosis, at least up to 3 weeks post-injury in both the cortex and hippocampus. In conclusion, we show that even one single mild TBI induces long-term behavioural deficits, associated with a persistent neuro-inflammatory status that can be detected by PET imaging.


Brain Concussion , Brain Injuries, Traumatic , Animals , Humans , Mice , Brain , Brain Concussion/complications , Brain Concussion/diagnostic imaging , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Disease Models, Animal , Neuroinflammatory Diseases , Positron-Emission Tomography/methods , Receptors, GABA
6.
EJNMMI Phys ; 9(1): 10, 2022 Feb 05.
Article En | MEDLINE | ID: mdl-35122556

BACKGROUND: Non-human primates (NHP) are critical in biomedical research to better understand the pathophysiology of diseases and develop new therapies. Based on its translational and longitudinal abilities along with its non-invasiveness, PET/CT systems dedicated to non-human primates can play an important role for future discoveries in medical research. The aim of this study was to evaluate the performance of a new PET/CT system dedicated to NHP imaging, the IRIS XL-220 developed by Inviscan SAS. This was performed based on the National Electrical Manufacturers Association (NEMA) NU 4-2008 standard recommendations (NEMA) to characterize the spatial resolution, the scatter fraction, the sensitivity, the count rate, and the image quality of the system. Besides, the system was evaluated in real conditions with two NHP with 18F-FDG and (-)-[18F]FEOBV which targets the vesicular acetylcholine transporter, and one rat using 18F-FDG. RESULTS: The full width at half maximum obtained with the 3D OSEM algorithm ranged between 0.89 and 2.11 mm in the field of view. Maximum sensitivity in the 400-620 keV and 250-750 keV energy windows were 2.37% (22 cps/kBq) and 2.81% (25 cps/kBq), respectively. The maximum noise equivalent count rate (NEC) for a rat phantom was 82 kcps at 75 MBq and 88 kcps at 75 MBq for energy window of 250-750 and 400-620 keV, respectively. For the monkey phantom, the maximum NEC was 18 kcps at 126 MBq and 19 kcps at 126 MBq for energy window of 250-750 and 400-620 keV, respectively. The IRIS XL provided an excellent quality of images in non-human primates and rats using 18F-FDG. The images acquired using (-)-[18F]FEOBV were consistent with those previously reported in non-human primates. CONCLUSIONS: Taken together, these results showed that the IRIS XL-220 is a high-resolution system well suited for PET/CT imaging in non-human primates.

7.
J Proteome Res ; 20(8): 3853-3864, 2021 08 06.
Article En | MEDLINE | ID: mdl-34282913

Studying the metabolome of specific gestational compartments is of growing interest in the context of fetus developmental disorders. However, the metabolomes of the placenta and amniotic fluid (AF) are poorly characterized. Therefore, we present the validation of a fingerprinting methodology. Using pregnant rats, we performed exhaustive and robust extractions of metabolites in the AF and lipids and more polar metabolites in the placenta. For the AF, we compared the extraction capabilities of methanol (MeOH), acetonitrile (ACN), and a mixture of both. For the placenta, we compared (i) the extraction capabilities of dichloromethane, methyl t-butyl ether (MTBE), and butanol, along with (ii) the impact of lyophilization of the placental tissue. Analyses were performed on a C18 and hydrophilic interaction liquid chromatography combined with high-resolution mass spectrometry. The efficiency and the robustness of the extractions were compared based on the number of the features or metabolites (for untargeted or targeted approach, respectively), their mean total intensity, and their coefficient of variation (% CV). The extraction capabilities of MeOH and ACN on the AF metabolome were equivalent. Lyophilization also had no significant impact and usefulness on the placental tissue metabolome profiling. Considering the placental lipidome, MTBE extraction was more informative because it allowed extraction of a slightly higher number of lipids, in higher concentration. This proof-of-concept study assessing the metabolomics and lipidomics of the AF and the placenta revealed changes in both metabolisms, at two different stages of rat gestation, and allowed a detailed prenatal metabolic fingerprinting.


Amniotic Fluid , Placenta , Animals , Female , Mass Spectrometry , Metabolome , Metabolomics , Pregnancy , Rats , Workflow
8.
Transl Psychiatry ; 11(1): 235, 2021 04 22.
Article En | MEDLINE | ID: mdl-33888684

Attention-Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorder characterized by inattention, impulsivity, and hyperactivity. The neurobiological mechanisms underlying ADHD are still poorly understood, and its diagnosis remains difficult due to its heterogeneity. Metabolomics is a recent strategy for the holistic exploration of metabolism and is well suited for investigating the pathophysiology of diseases and finding molecular biomarkers. A few clinical metabolomic studies have been performed on peripheral samples from ADHD patients but are limited by their access to the brain. Here, we investigated the brain, blood, and urine metabolomes of SHR/NCrl vs WKY/NHsd rats to better understand the neurobiology and to find potential peripheral biomarkers underlying the ADHD-like phenotype of this animal model. We showed that SHR/NCrl rats can be differentiated from controls based on their brain, blood, and urine metabolomes. In the brain, SHR/NCrl rats displayed modifications in metabolic pathways related to energy metabolism and oxidative stress further supporting their importance in the pathophysiology of ADHD bringing news arguments in favor of the Neuroenergetic theory of ADHD. Besides, the peripheral metabolome of SHR/NCrl rats also shared more than half of these differences further supporting the importance of looking at multiple matrices to characterize a pathophysiological condition of an individual. This also stresses out the importance of investigating the peripheral energy and oxidative stress metabolic pathways in the search of biomarkers of ADHD.


Attention Deficit Disorder with Hyperactivity , Animals , Brain , Disease Models, Animal , Humans , Metabolome , Rats , Rats, Inbred SHR , Rats, Inbred WKY
9.
Front Neurosci ; 15: 803927, 2021.
Article En | MEDLINE | ID: mdl-35069106

In a previous study, we showed that viniferin decreased amyloid deposits and reduced neuroinflammation in APPswePS1dE9 transgenic mice between 3 and 6 months of age. In the present study, wild type and APPswePS1dE9 transgenic mice were treated from 7 to 11 or from 3 to 12 months by a weekly intraperitoneal injection of either 20 mg/kg viniferin or resveratrol or their vehicle, the polyethylene glycol 200 (PEG 200). The cognitive status of the mice was evaluated by the Morris water maze test. Then, amyloid burden and neuroinflammation were quantified by western-blot, Enzyme-Linked ImmunoSorbent Assay (ELISA), immunofluorescence, and in vivo micro-Positon Emission Tomography (PET) imaging. Viniferin decreased hippocampal amyloid load and deposits with greater efficiency than resveratrol, and both treatments partially prevented the cognitive decline. Furthermore, a significant decrease in brain uptake of the TSPO PET tracer [18F]DPA-714 was observed with viniferin compared to resveratrol. Expression of GFAP, IBA1, and IL-1ß were decreased by viniferin but PEG 200, which was very recently shown to be a neuroinflammatory inducer, masked the neuroprotective power of viniferin.

10.
Talanta ; 195: 593-598, 2019 Apr 01.
Article En | MEDLINE | ID: mdl-30625588

In this study, we validated a method for quantifying 20 tryptophan (Trp) catabolites by liquid chromatography coupled with high resolution mass spectrometry (LC-HRMS) in 4 different matrices (urine, serum, intestinal contents and liver). The detection limit for all metabolites ranged between 0.015 and 11.25 nmol/L and the dynamic range of the calibration curves were adjusted to allow quantification of metabolites at endogenous levels. Matrix effects were evaluated using isotope labeled internal standards. Reproducibility in the 4 matrices was characterized by CV = 6.2% with an accuracy of 6.6%. Our method has been applied to the determination and quantification of 20 metabolites concentrations in 5 different mouse compartments (plus cecal contents). Our results show that our approach allows for a global exploration of the Trp metabolism by quantifying a large number of Trp metabolites, at the individual level by multi-matrix approach.


Cecum/chemistry , Gastrointestinal Contents/chemistry , Liver/chemistry , Tryptophan/analysis , Tryptophan/metabolism , Animals , Cecum/metabolism , Chromatography, High Pressure Liquid , Chromatography, Liquid , Kynurenine/metabolism , Liver/metabolism , Mass Spectrometry , Mice , Reproducibility of Results , Serotonin/metabolism
11.
J Pharm Biomed Anal ; 142: 270-278, 2017 Aug 05.
Article En | MEDLINE | ID: mdl-28531831

We developed a multi-platform approach for the metabolome exploration of rat brain tissue, using liquid chromatography coupled with mass spectrometry (LC-MS), nuclear magnetic resonance spectroscopy (NMR) and gas-chromatography coupled with mass spectrometry (GC-MS). The critical steps for metabolite exploration of cerebral tissues are tissue lysis and metabolites extraction. We first evaluated the impact of freeze-drying compared to wet tissue metabolites extraction using NMR and LC-MS with a reversed phase liquid chromatography. Then, we compared four metabolite extraction methods Based on the number of metabolites extracted, their intensity and their coefficient of variation (%CV), the most reproducible protocol (one-step extraction with acetonitrile on lyophilized material) was chosen to further evaluate the impact of sample mass on method performance (3, 6, and 9mg were essayed). GC-MS analysis was also investigated by analyzing four different methoximation/silylation derivatization combinations. The optimal analytical protocols were proposed to establish the reliability required to realize untargeted brain tissue metabolomics exploration. The most reliable workflow was then exemplified by analyzing three rat brain regions (cerebellum, frontal and parietal cortices, n=12) by 1H NMR, LC-MS and GC-MS, allowing their clustering based on their metabolic profiles. We present here an example of development of methodology that should be done before running analysis campaigns.


Brain , Animals , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Mass Spectrometry , Metabolome , Metabolomics , Rats , Reproducibility of Results , Workflow
12.
Neuropsychopharmacology ; 42(10): 1981-1990, 2017 Sep.
Article En | MEDLINE | ID: mdl-28553833

The chronic and relapsing nature of addiction suggests that drugs produce persistent adaptations in the brain that make individuals with drug addiction particularly sensitive to drug-related cues and stress and incapable of controlling drug-seeking and drug-taking behavior. In animal models, several long-lasting neuroadaptations have been described. However, few studies have used brain-imaging techniques to provide a complete picture of brain functioning in the course of withdrawal from cocaine. In this study, we allowed rats to self-administer cocaine under short-access (1-h/day) or long-access (6-h/day) conditions and used 2-deoxy-2-(18F)fluoro-d-glucose (18FDG) positron emission tomography scanning to investigate the longitudinal changes in metabolic activity 1 and 4 weeks after discontinuation of cocaine self-administration. We found that compared to naive rats, both long-access and short-access rats showed significant disruptions in basal brain metabolic activity. However, compared to short-access, long-access rats showed more intense, and long-lasting neuroadaptations in a network of brain areas. In particular, abstinence from extended access to cocaine was associated with decreased metabolic activity in the anterior cingulate cortex, the insular cortex, and the dorsolateral striatum, and increased metabolic activity in the mesencephalon, amygdala, and hippocampus. This pattern is strikingly similar to that described in humans that has led to the proposal of the Impaired Response Inhibition and Salience Attribution model of addiction. These results demonstrate that extended access to cocaine leads to persistent neuroadaptations in brain regions involved in motivation, salience attribution, memory, stress, and inhibitory control that may underlie increased risks of relapse.


Brain/metabolism , Cocaine-Related Disorders/metabolism , Animals , Brain/diagnostic imaging , Brain/drug effects , Brain Mapping , Cocaine/administration & dosage , Cocaine-Related Disorders/diagnostic imaging , Disease Models, Animal , Dopamine Uptake Inhibitors/administration & dosage , Fluorodeoxyglucose F18 , Longitudinal Studies , Male , Positron-Emission Tomography , Radiopharmaceuticals , Rats, Sprague-Dawley , Self Administration
13.
PLoS One ; 12(2): e0172776, 2017.
Article En | MEDLINE | ID: mdl-28241065

Dexamphetamine (AMPH) is a psychostimulant drug that is used both recreationally and as medication for attention deficit hyperactivity disorder. Preclinical studies have demonstrated that repeated exposure to AMPH can induce damage to nerve terminals of dopamine (DA) neurons. We here assessed the underlying neurobiological changes in the DA system following repeated AMPH exposure and pre-treated rats with AMPH or saline (4 times 5 mg/kg s.c., 2 hours apart), followed by a 1-week washout period. We then used pharmacological MRI (phMRI) with a methylphenidate (MPH) challenge, as a sensitive and non-invasive in-vivo measure of DAergic function. We subsequently validated the DA-ergic changes post-mortem, using a.o. high-performance liquid chromatography (HPLC) and autoradiography. In the AMPH pre-treated group, we observed a significantly larger BOLD response to the MPH challenge, particularly in DA-ergic brain areas and their downstream projections. Subsequent autoradiography studies showed that AMPH pre-treatment significantly reduced DA transporter (DAT) density in the caudate-putamen (CPu) and nucleus accumbens, whereas HPLC analysis revealed increases in the DA metabolite homovanillic acid in the CPu. Our results suggest that AMPH pre-treatment alters DAergic responsivity, a change that can be detected with phMRI in rats. These phMRI changes likely reflect increased DA release together with reduced DAT binding. The ability to assess subtle synaptic changes using phMRI is promising for both preclinical studies of drug discovery, and for clinical studies where phMRI can be a useful tool to non-invasively investigate DA abnormalities, e.g. in neuropsychiatric disorders.


Brain/drug effects , Central Nervous System Stimulants/pharmacology , Dextroamphetamine/pharmacology , Dopamine/metabolism , Methylphenidate/pharmacology , Animals , Brain/metabolism , Central Nervous System Stimulants/adverse effects , Chromatography, High Pressure Liquid , Corpus Striatum/metabolism , Dextroamphetamine/adverse effects , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Uptake Inhibitors/pharmacology , Dopaminergic Neurons/drug effects , Drug Administration Schedule , Glial Fibrillary Acidic Protein/metabolism , Hemodynamics , Immunohistochemistry , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/metabolism
14.
Neuroimage ; 146: 1025-1037, 2017 02 01.
Article En | MEDLINE | ID: mdl-27989846

The external pallidum (GPe) is a component of the indirect pathway centrally placed in the basal ganglia. Studies already demonstrated that the pharmacological disinhibition of the sensorimotor, associative, and limbic GPe produced dyskinesia, hyperactivity, and compulsive behaviors, respectively. The aim of this study was to investigate the cortical regions altered by the disinhibition of each GPe functional territory. Thus, 5 macaques were injected with bicuculline in sensorimotor, associative, and limbic sites of the GPe producing dyskinesia, hyperactivity, and compulsive behaviors, and underwent in vivo positron tomography with 18F-2-fluoro-2-deoxy-D-glucose to identify cortical dysfunctions related to GPe disinhibition. Blood cortisol levels were also quantified as a biomarker of anxiety for each condition. Our results showed that pallidal bicuculline injections in anesthetized animals reproducibly modified the activity of specific ipsilateral and contralateral cortical areas depending on the pallidal territory targeted. Bicuculline injections in the limbic GPe led to increased ipsilateral activations in limbic cortical regions (anterior insula, amygdala, and hippocampus). Injections in the associative vs. sensorimotor GPe increased the activity in the ipsilateral midcingulate vs. somatosensory and parietal cortices. Moreover, bicuculline injections increased blood cortisol levels only in animals injected in their limbic GPe. These are the first functional results supporting the model of opened cortico-striato-thalamo-cortical loops where modifications in a functional pallidal territory can impact cortical activities of the same functional territory but also cortical activities of other functional territories. This highlights the importance of the GPe as a crucial node in the top-down control of the cortico-striato-thalamo-cortical circuits from the frontal cortex to influence the perception, attention, and emotional processes at downstream (or non-frontal) cortical levels. Finally, we showed the implication of the ventral pallidum with the amygdala and the insular cortex in a circuit related to aversive processing that should be crucial for the production of anxious disorders.


Behavior, Animal , Brain/metabolism , Globus Pallidus/metabolism , Animals , Bicuculline/administration & dosage , Brain/drug effects , Compulsive Behavior/metabolism , Dyskinesias/metabolism , Fluorodeoxyglucose F18 , GABA-A Receptor Antagonists/administration & dosage , Globus Pallidus/drug effects , Hyperkinesis/metabolism , Macaca fascicularis , Macaca mulatta , Positron-Emission Tomography
15.
Int J Neuropsychopharmacol ; 18(4)2014 Oct 31.
Article En | MEDLINE | ID: mdl-25522388

BACKGROUND: Methylphenidate (MPH) is a commonly-used medication for the treatment of children with Attention-Deficit/Hyperactivity Disorders (ADHD). However, its prescription to adults with ADHD and narcolepsy raises the question of how the brain is impacted by MPH exposure during pregnancy. The goal of this study was to elucidate the long-term neurobiological consequences of prenatal exposure to MPH using a rat model. METHODS: We focused on the effects of such treatment on the adult dopamine (DA) system and on the reactivity of animals to natural rewards. RESULTS: This study shows that adult male rats prenatally exposed to MPH display elevated expression of presynaptic DA markers in the DA cell bodies and the striatum. Our results also suggest that MPH-treated animals could exhibit increased tonic DA activity in the mesolimbic pathway, altered signal-to-noise ratio after a pharmacological stimulation, and decreased reactivity to the locomotor effects of cocaine. Finally, we demonstrated that MPH rats display a decreased preference and motivation for sucrose. CONCLUSIONS: This is the first preclinical study reporting long-lasting neurobiological alterations of DA networks as well as alterations in motivational behaviors for natural rewards after a prenatal exposure to MPH. These results raise concerns about the possible neurobiological consequences of MPH treatment during pregnancy.


Brain/physiopathology , Central Nervous System Stimulants/toxicity , Dopamine/metabolism , Methylphenidate/toxicity , Prenatal Exposure Delayed Effects , Reward , Animals , Brain/drug effects , Brain/growth & development , Central Nervous System Stimulants/pharmacokinetics , Cocaine/pharmacology , Dietary Sucrose/administration & dosage , Disease Models, Animal , Dopamine Uptake Inhibitors/pharmacology , Female , Male , Methylphenidate/pharmacokinetics , Motivation/drug effects , Motivation/physiology , Motor Activity/drug effects , Motor Activity/physiology , Pregnancy , Random Allocation , Rats , Rats, Wistar
16.
Nucl Med Biol ; 41(1): 106-13, 2014 Jan.
Article En | MEDLINE | ID: mdl-24210285

INTRODUCTION: We examined whether [(18)F]LBT-999 ((E)-N-(4-fluorobut-2-enyl)2ß-carbomethoxy-3ß-(4'-tolyl)nortropane) is an efficient positron emission tomography (PET) tracer for the quantification of the dopamine transporter (DAT) in the healthy rat brain. METHODS: PET studies were performed using several experimental designs, i.e. test-retest, co-injection with different doses of unlabelled LBT, displacement with GBR12909 and pre-injection of amphetamine. RESULTS: The uptake of [(18)F]LBT-999 confirmed its specific binding to the DAT. The non-displaceable uptake (BP(ND)) in the striatum, between 5.37 and 4.39, was highly reproducible and reliable, and was decreased by 90% by acute injection of GBR12909. In the substantia nigra/ventral tegmental area (SN/VTA), the variability was higher and the reliability was lower. Pre-injection of amphetamine induced decrease of [(18)F]LBT-999 BP(ND) of 50% in the striatum. CONCLUSIONS: [(18)F]LBT-999 allows the quantification of the DAT in living rat brain with high reproducibility, sensitivity and specificity. It could be used to quantify the DAT in rodent models, thereby allowing to study neurodegenerative and neuropsychiatric diseases.


Brain/diagnostic imaging , Brain/metabolism , Cocaine/analogs & derivatives , Dopamine Plasma Membrane Transport Proteins/metabolism , Fluorine Radioisotopes , Positron-Emission Tomography , Amphetamine/pharmacology , Animals , Brain/drug effects , Kinetics , Male , Rats , Rats, Wistar , Reproducibility of Results
17.
Neurotoxicol Teratol ; 32(4): 425-31, 2010.
Article En | MEDLINE | ID: mdl-20304047

3,4-methylenedioxymethamphetamine or MDMA (ecstasy) is a synthetic illicit drug which is widely consumed throughout the world. Drug abuse during pregnancy may have an impairing effect on the progeny of drug-abusing mothers. The purpose of the present study was to assess the effect of prenatal MDMA exposure on the progeny development, using a rat model. Pregnant animals were injected daily with MDMA (10 mg/kg) between the 13th and 20th days of gestation. Male and female pups were then tested throughout the lactation period on the appearance and improvement of physical and sensory motor parameters. Appearance of some physical features (eyes opening and incisor eruption) and neurological reflexes as well as improving performances in negative geotaxis, gait and inclined board tests were delayed in pups prenatally exposed to MDMA compared to saline-treated pups. In contrast, functions that are necessary for survival such as forelimb reflex (that enables suckling) were present in both groups. At four weeks of age, MDMA animals recovered to normal level in all studied parameters. The delay in physical and neurological reflex development could be interpreted as alterations in maturation of some neuronal circuitries induced by prenatal MDMA exposure.


Animals, Newborn/growth & development , N-Methyl-3,4-methylenedioxyamphetamine/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/psychology , Animals , Behavior, Animal/drug effects , Female , Gait/drug effects , Male , Maternal Behavior/drug effects , Pregnancy , Rats , Rats, Wistar , Reflex/drug effects
18.
Int J Dev Neurosci ; 2008 Dec 11.
Article En | MEDLINE | ID: mdl-19118618

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

19.
Synapse ; 60(4): 314-8, 2006 Sep 15.
Article En | MEDLINE | ID: mdl-16786538

Dopamine D2 partial agonists have been successfully used as schizophrenia therapeutics. Radiolabeled D2 partial agonists may have application in elucidating dopaminergic transmission. It was the goal of this work to radiolabel (S)-(-)propyl-3-(3-hydroxyphenyl)piperidine (preclamol; (-)3-PPP), a partial dopamine D2 agonist with carbon-11 (half-life=20.4 min) and to evaluate this novel radiopharmaceutical for dopaminergic imaging in rodent models. [11C]Preclamol was synthesized by acylation of (S)-3-(3-hydroxyphenyl)piperidine hydrochloride with [11C]propionyl chloride, followed by LiAlH4 reduction, and HPLC purification. Male Sprague-Dawley rats were injected in the tail vein with a saline solution of [11C]preclamol (1.1 mug/kg) and sacrificed at 5, 15, 30 and 60 min postinjection. Brain regions were excised, weighed, and measured for radioactivity. In vivo binding kinetics of [11C]preclamol were determined with beta-sensitive microprobes implanted into the striatum and cerebellum of an anesthetized rat. A full production of [11C]preclamol resulted in 34 mCi ready for injection (corresponding to 4% uncorrected radiochemical yield, based on starting [11C]CO2) with specific activity of 535 mCi/micromol. The total synthesis time was 45 min and resulted in chemically and radiochemically pure [11C]preclamol (>99%; n=3). High levels of radioactivity were observed in rat brain indicating good blood-brain barrier penetration of [11C]preclamol, with 0.5 to 0.7% injected dose per gram of wet tissue present in all brain regions at 5 minutes postinjection. Unfortunately, [11C]preclamol displayed minimal preferential uptake in dopaminergic brain regions. A low striatal specific binding (SB) ratio of 0.32 was determined ex vivo at 60 min postinjection and was in close agreement with the microprobe study over 60 min (peaked at 27 min postinjection; SB ratio=0.6). The binding potential value was only 0.34 over a 1 hour time course, suggesting that [11C]preclamol is not suitable for cerebral PET studies.


Brain/diagnostic imaging , Dopamine Agonists/pharmacology , Piperidines/chemical synthesis , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemical synthesis , Receptors, Dopamine D2/agonists , Animals , Blood-Brain Barrier , Brain Chemistry , Chemical Phenomena , Chemistry, Physical , Indicators and Reagents , Injections, Intravenous , Isotope Labeling , Male , Piperidines/administration & dosage , Radiopharmaceuticals/administration & dosage , Rats , Rats, Sprague-Dawley
20.
Synapse ; 60(2): 172-83, 2006 Aug.
Article En | MEDLINE | ID: mdl-16715499

This study reports on the binding kinetics and pharmacological characterization of [11C]-(+)-PHNO ((+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol), a promising agonist radiotracer for in vivo evaluation of the D2-receptor. Its in vivo kinetics were monitored in rat striatum and cerebellum using a beta-sensitive Microprobe system. Control studies showed that [11C]-(+)-PHNO binding was reversible and reached a peak time equilibrium of specific binding in striatum 30 min after radiotracer injection. The binding potential (BP) calculated by the simplified reference tissue model was 3-fold higher than that measured with [11C]-(-)-NPA (2.14 +/- 0.50 vs. 0.66 +/- 0.01, respectively). In contrast, the methyl analog of (+)-PHNO, [11C]-(+)-MHNO, which displayed promising D2-agonist properties in vitro, showed no specific binding in the striatum in vivo. [11C]-(+)-PHNO binding was totally blocked by raclopride (1 mg/kg; i.v.) and 97% displaced by NPA (2 mg/kg; i.v.) suggesting that [11C]-(+)-PHNO was specific for the high affinity states of D2/D3-receptors. However, (+)-PHNO (1 mg/kg; i.v.) totally blocked and displaced [11C]-raclopride binding in striatum. Thus, (+)-PHNO at high concentrations might be able to bind to the low affinity states of D2/D3-receptors. After an amphetamine pretreatment (2 mg/kg; i.v.), a 69% decrease in BP value (P < 0.05) was observed for [11C]-(+)-PHNO indicating that its binding was highly sensitive to variations of endogenous DA. These results substantiate the use of [11C]-(+)-PHNO as an agonist radiotracer for D2-imaging. The sensitivity of its binding to competition with endogenous DA suggests an association with the subset of high affinity state D2-receptors.


Binding, Competitive/drug effects , Brain Chemistry/drug effects , Brain/drug effects , Dopamine/metabolism , Oxazines/metabolism , Oxazines/pharmacokinetics , Receptors, Dopamine D2/metabolism , Amphetamine/pharmacology , Animals , Binding, Competitive/physiology , Brain/metabolism , Brain Chemistry/physiology , Carbon Radioisotopes , Cerebellum/drug effects , Cerebellum/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Dose-Response Relationship, Drug , Drug Interactions/physiology , Male , Molecular Structure , Raclopride/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/analysis
...