Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Pathogens ; 13(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38921770

ABSTRACT

Chronic lung disease (CLD) of prematurity, a common cause of morbidity and mortality in preterm-born infants, has a multifactorial aetiology. This review summarizes the current evidence for the effect of the gut and airway microbiota on the development of CLD, highlighting the differences in the early colonisation patterns in preterm-born infants compared to term-born infants. Stool samples from preterm-born infants who develop CLD have less diversity than those who do not develop CLD. Pulmonary inflammation, which is a hallmark in the development of CLD, may potentially be influenced by gut bacteria. The respiratory microbiota is less abundant than the stool microbiota in preterm-born infants. There is a lack of clear evidence for the role of the respiratory microbiota in the development of CLD, with results from individual studies not replicated. A common finding is the presence of a single predominant bacterial genus in the lungs of preterm-born infants who develop CLD. Probiotic preparations have been proposed as a potential therapeutic strategy to modify the gut or lung microbiota with the aim of reducing rates of CLD but additional robust evidence is required before this treatment is introduced into routine clinical practice.

2.
Front Pharmacol ; 15: 1308547, 2024.
Article in English | MEDLINE | ID: mdl-38873414

ABSTRACT

We investigated drug-induced acute neuronal electrophysiological changes using Micro-Electrode arrays (MEA) to rat primary neuronal cell cultures. Data based on 6-key MEA parameters were analyzed for plate-to-plate vehicle variability, effects of positive and negative controls, as well as data from over 100 reference drugs, mostly known to have pharmacological phenotypic and clinical outcomes. A Least Absolute Shrinkage and Selection Operator (LASSO) regression, coupled with expert evaluation helped to identify the 6-key parameters from many other MEA parameters to evaluate the drug-induced acute neuronal changes. Calculating the statistical tolerance intervals for negative-positive control effects on those 4-key parameters helped us to develop a new weighted hazard scoring system on drug-induced potential central nervous system (CNS) adverse effects (AEs). The weighted total score, integrating the effects of a drug candidate on the identified six-pivotal parameters, simply determines if the testing compound/concentration induces potential CNS AEs. Hereto, it uses four different categories of hazard scores: non-neuroactive, neuroactive, hazard, or high hazard categories. This new scoring system was successfully applied to differentiate the new compounds with or without CNS AEs, and the results were correlated with the outcome of in vivo studies in mice for one internal program. Furthermore, the Random Forest classification method was used to obtain the probability that the effect of a compound is either inhibitory or excitatory. In conclusion, this new neuronal scoring system on the cell assay is actively applied in the early de-risking of drug development and reduces the use of animals and associated costs.

3.
Pediatr Res ; 95(1): 205-212, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37550487

ABSTRACT

BACKGROUND: Macrolides, including azithromycin, are increasingly used in preterm-born infants to treat Ureaplasma infections. The baseline carriage of macrolide resistance genes in the preterm stool microbiota is unknown. OBJECTIVES: Identify carriage of azithromycin resistant bacteria and the incidence of macrolide resistant genes. METHODS: Azithromycin resistant bacteria were isolated from serial stool samples obtained from preterm infants (≤32 weeks' gestation) by culturing aerobically/anaerobically, in the presence/absence of azithromycin. Using quantitative PCR, we targeted 6 common macrolide resistance genes (erm(A), erm(B), erm(C), erm(F), mef(A/E), msr(A)) in DNA extracted from selected bacteria resistant to azithromycin. RESULTS: From 89 stool samples from 37 preterm-born infants, 93.3% showed bacterial growth in aerobic or anaerobic conditions. From the 280 azithromycin resistant isolates that were identified, Staphylococcus (75%) and Enterococcus (15%) species dominated. Macrolide resistance genes were identified in 91% of resistant isolates: commonest were erm(C) (46% of isolates) and msr(A) (40%). Multiple macrolide resistance genes were identified in 18% of isolates. CONCLUSION: Macrolide resistance is common in the gut microbiota of preterm-born infants early in life, most likely acquired from exposure to the maternal microbiota. It will be important to assess modulation of macrolide resistance, if macrolide treatment becomes routine in the management of preterm infants. IMPACT STATEMENT: Azithromycin resistance is present in the stool microbiota in the first month of life in preterm infants 91% of azithromycin resistant bacteria carried at least one of 6 common macrolide resistant genes Increasing use of macrolides in the preterm population makes this an important area of study.


Subject(s)
Azithromycin , Gastrointestinal Microbiome , Infant, Newborn , Infant , Humans , Azithromycin/pharmacology , Azithromycin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Macrolides/pharmacology , Macrolides/therapeutic use , Drug Resistance, Bacterial/genetics , Infant, Premature , Microbial Sensitivity Tests
4.
Biomolecules ; 13(9)2023 09 06.
Article in English | MEDLINE | ID: mdl-37759755

ABSTRACT

Loperamide has been a safe and effective treatment for diarrhea for many years. However, many cases of cardiotoxicity with intentional abuse of loperamide ingestion have recently been reported. We evaluated loperamide in in vitro and in vivo cardiac safety models to understand the mechanisms for this cardiotoxicity. Loperamide slowed conduction (QRS-duration) starting at 0.3 µM [~1200-fold (×) its human Free Therapeutic Plasma Concentration; FTPC] and reduced the QT-interval and caused cardiac arrhythmias starting at 3 µM (~12,000× FTPC) in an isolated rabbit ventricular-wedge model. Loperamide also slowed conduction and elicited Type II/III A-V block in anesthetized guinea pigs at overdose exposures of 879× and 3802× FTPC. In ion-channel studies, loperamide inhibited hERG (IKr), INa, and ICa currents with IC50 values of 0.390 µM, 0.526 µM, and 4.091 µM, respectively (i.e., >1560× FTPC). Additionally, in silico trials in human ventricular action potential models based on these IC50s confirmed that loperamide has large safety margins at therapeutic exposures (≤600× FTPC) and confirmed repolarization abnormalities in the case of extreme doses of loperamide. The studies confirmed the large safety margin for the therapeutic use of loperamide but revealed that at the extreme exposure levels observed in human overdose, loperamide can cause a combination of conduction slowing and alterations in repolarization time, resulting in cardiac proarrhythmia. Loperamide's inhibition of the INa channel and hERG-mediated IKr are the most likely basis for this cardiac electrophysiological toxicity at overdose exposures. The cardiac toxic effects of loperamide at the overdoses could be aggravated by co-medication with other drug(s) causing ion channel inhibition.


Subject(s)
Cardiotoxicity , Loperamide , Humans , Animals , Guinea Pigs , Rabbits , Loperamide/toxicity , Cardiotoxicity/etiology , Arrhythmias, Cardiac/chemically induced , Heart , Diarrhea
5.
Plants (Basel) ; 12(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37446964

ABSTRACT

Aerial seed banks facilitate population persistence by extending the temporal range of seed dispersal. Knowing the temporal range of germination will improve our understanding of the relationship between seed germination dynamics and aerial seed bank storage duration. We tested the effects of temperature (12/12 h of 5/10, 10/20, 20/30 and 25/35 °C) and light variation (12 h light/12 h darkness and 24 h darkness per day) on germination of Rumex obtusifolius L. seeds retained in an aerial seed bank for 0, 2, 4, 6, 8 and 10 months. Freshly harvested R. obtusifolius were non-dormant and exhibited germination rates of up to 92%. Overall, seeds of R. obtusifolius germinated reliably at all but the lowest temperature (5/10 °C). Seeds maintained high viability throughout the collection period, indicating that fluctuating weather conditions had little influence on seed germination. Thus, the species can maintain viable seeds in aerial storage for up to 10 months and contribute viable seeds to the soil seed bank year-round. This ability to maintain a renewed soil seed bank contributes to the species' strong resilience in colonizing disturbed areas and makes it a difficult weed to control.

6.
Biomolecules ; 13(4)2023 04 14.
Article in English | MEDLINE | ID: mdl-37189424

ABSTRACT

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are currently used following the Comprehensive in vitro Proarrhythmic Assay (CiPA) initiative and subsequent recommendations in the International Council for Harmonization (ICH) guidelines S7B and E14 Q&A, to detect drug-induced cardiotoxicity. Monocultures of hiPSC-CMs are immature compared to adult ventricular cardiomyocytes and might lack the native heterogeneous nature. We investigated whether hiPSC-CMs, treated to enhance structural maturity, are superior in detecting drug-induced changes in electrophysiology and contraction. This was achieved by comparing hiPSC-CMs cultured in 2D monolayers on the current standard (fibronectin matrix, FM), to monolayers on a coating known to promote structural maturity (CELLvo™ Matrix Plus, MM). Functional assessment of electrophysiology and contractility was made using a high-throughput screening approach involving the use of both voltage-sensitive fluorescent dyes for electrophysiology and video technology for contractility. Using 11 reference drugs, the response of the monolayer of hiPSC-CMs was comparable in the two experimental settings (FM and MM). The data showed no functionally relevant differences in electrophysiology between hiPSC-CMs in standard FM and MM, while contractility read-outs indicated an altered amplitude of contraction but not changes in time course. RNA profiling for cardiac proteins shows similarity of the RNA expression across the two forms of 2D culture, suggesting that cell-to-matrix adhesion differences may explain account for differences in contraction amplitude. The results support the view that hiPSC-CMs in both 2D monolayer FM and MM that promote structural maturity are equally effective in detecting drug-induced electrophysiological effects in functional safety studies.


Subject(s)
Cardiotoxicity , Induced Pluripotent Stem Cells , Humans , Cardiotoxicity/diagnosis , Cells, Cultured , High-Throughput Screening Assays , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism
7.
Cells ; 12(6)2023 03 21.
Article in English | MEDLINE | ID: mdl-36980298

ABSTRACT

Drug-induced seizure liability is a significant safety issue and the basis for attrition in drug development. Occurrence in late development results in increased costs, human risk, and delayed market availability of novel therapeutics. Therefore, there is an urgent need for biologically relevant, in vitro high-throughput screening assays (HTS) to predict potential risks for drug-induced seizure early in drug discovery. We investigated drug-induced changes in neural Ca2+ oscillations, using fluorescent dyes as a potential indicator of seizure risk, in hiPSC-derived neurons co-cultured with human primary astrocytes in both 2D and 3D forms. The dynamics of synchronized neuronal calcium oscillations were measured with an FDSS kinetics reader. Drug responses in synchronized Ca2+ oscillations were recorded in both 2D and 3D hiPSC-derived neuron/primary astrocyte co-cultures using positive controls (4-aminopyridine and kainic acid) and negative control (acetaminophen). Subsequently, blinded tests were carried out for 25 drugs with known clinical seizure incidence. Positive predictive value (accuracy) based on significant changes in the peak number of Ca2+ oscillations among 25 reference drugs was 91% in 2D vs. 45% in 3D hiPSC-neuron/primary astrocyte co-cultures. These data suggest that drugs that alter neuronal activity and may have potential risk for seizures can be identified with high accuracy using an HTS approach using the measurements of Ca2+ oscillations in hiPSC-derived neurons co-cultured with primary astrocytes in 2D.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Cells, Cultured , High-Throughput Screening Assays , Neurons , Seizures/chemically induced
8.
Eur J Pharmacol ; 931: 175189, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35987255

ABSTRACT

BACKGROUND: Functional network activity is a characteristic for neuronal cells, and the complexity of the network activity represents the necessary substrate to support complex brain functions. Drugs that drastically increase the neuronal network activity may have a potential higher risk for seizures in human. Although there has been some recent considerable progress made using cultures from different types of human-induced pluripotent stem cell (hiPSC) derived neurons, one of the primary limitations is the lack of - or very low - network activity. METHOD: In the present study, we investigated whether the limited neuronal network activity in commercial hiPSC-neurons (CNS.4U®) is capable of detecting drug-induced potential seizure risks. Therefore, we compared the hiPSC-results to those in rat primary neurons with known high neuronal network activity in vitro. RESULTS: Gene expression and electrical activity from in vitro developing neuronal networks were assessed at multiple time-points. Transcriptomes of 7, 28, and 50 days in vitro were analyzed and compared to those from human brain tissues. Data from measurements of electrical activity using multielectrode arrays (MEAs) indicate that neuronal networks matured gradually over time, albeit in hiPSC this developed slower than rat primary cultures. The response of neuronal networks to neuronal active reference drugs modulating glutamatergic, acetylcholinergic and GABAergic pathways could be detected in both hiPSC-neurons and rat primary neurons. However, in comparison, GABAergic responses were limited in hiPSC-neurons. CONCLUSION: Overall, despite a slower network development and lower network activity, CNS.4U® hiPSC-neurons can be used to detect drug induced changes in neuronal network activity, as shown by well-known seizurogenic drugs (affecting e.g., the Glycine receptor and Na+ channel). However, lower sensitivity to GABA antagonists has been observed.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Cell Differentiation , Cells, Cultured , Humans , Neurons/metabolism , Rats , Seizures/chemically induced , Seizures/metabolism , Synaptic Transmission
9.
Front Plant Sci ; 13: 906771, 2022.
Article in English | MEDLINE | ID: mdl-35712590

ABSTRACT

Wetland species commonly exhibit a range of strategies to cope with water stress, either through drought tolerance or through avoidance of the period of limited water availability. Natural populations provide a genetic resource for ecological remediation and may also have direct economic value. We investigated the effects of drought stress on the seed germination of wetland species. Nineteen species were germinated in four concentrations of polyethylene glycol 6000 (PEG) and were evaluated daily (12-h light photoperiod) or after 35 days (continuous darkness) to determine seed germination under water stress. Germination percentage decreased with an increase in polyethylene glycol 6000 (PEG) concentration, but species' germination response to PEG concentration varied significantly. Seeds recovered their germinability after the alleviation of water stress, but the extent of recovery was species-dependent.

10.
Front Physiol ; 13: 838435, 2022.
Article in English | MEDLINE | ID: mdl-35547580

ABSTRACT

Introduction: Early identification of cardiac risk is essential for reducing late-stage attrition in drug development. We adapted the previously published cardiac hazard risk-scoring system using a calcium transient assay in human stem cell-derived CMs for the identification of cardiac risks recorded from the new hiPSC-CM line and investigated its predictivity and translational value based on the screening of a large number of reference and proprietary compounds. Methods: Evaluation of 55 reference drugs provided the translation of various pharmacological effects into a single hazard label (no, low, high, or very high hazard) using a Ca2+-sensitive fluorescent dye assay recorded by -by FDSS/µCell Functional Drug Screening System (Hamamatsu on hiPSC-CM line (FCDI iCell Cardiomyocytes2). Results: Application of the adapted hazard scoring system in the Ca2+ transient assay, using a second hiPS-CM line, provided comparable scoring results and predictivity of hazard, to the previously published scoring approach, with different pharmacological drug classes, as well as screening new chemical entities (NCE's) using a single hazard label from four different scoring levels (no, low, high, or very high hazard). The scoring system results also showed minimal variability across three different lots of hiPSC-CMs, indicating good reproducibility of the cell line. The predictivity values (sensitivity and specificity) for drug-induced acute cardiac risk for QT-interval prolongation and Torsade de pointes (TdPs) were >95% and statistical modeling confirmed the prediction of proarrhythmic risk. The outcomes of the NCEs also showed consistency with findings in other well-established in vitro and in vivo cardiac risk assays. Conclusion: Evaluation of a large list of reference compounds and internal NCEs has confirmed the applicability of the adaptations made to the previously published novel scoring system for the hiPSC-CMs. The validation also established the predictivity for drug-induced cardiac risks with good translation to other established preclinical in vitro and in vivo assays, confirming the application of this novel scoring system in different stem cell-CM lines for early cardiac hazard identification.

11.
Sci Rep ; 12(1): 954, 2022 01 19.
Article in English | MEDLINE | ID: mdl-35046463

ABSTRACT

Plant species of the Brazilian Caatinga experience seasonal wet and dry extremes, requiring seasonally different leaf characteristics for optimizing water availability. We investigated if Croton blanchetianus Baill exhibits leaf morphoanatomical traits across seasons and positioning in sunlight/natural shade. Leaves of ten 1-3 m tall plants in full sunlight and ten in natural shade were assessed in May, July (wet season), October and December (dry season) 2015 for gas exchange, leaf size, lamina and midrib cross sections (14 parameters), and chloroplast structure (5 parameters). Net photosynthesis was greater during the wet season (21.6 µm-2 s-1) compared to the dry season (5.8 µm-2 s-1) and was strongly correlated with almost all measured parameters (p < 0.01). Shaded leaves in the wet season had higher specific leaf area (19.9 m2 kg-1 in full-sun and 23.1 m2 kg-1 in shade), but in the dry season they did not differ from those in full sun (7.5 m2 kg-1 and 7.2 m2 kg-1). In the wet season, the expansion of the adaxial epidermis and mesophyll lead to larger and thicker photosynthetic area of leaves. Furthermore, chloroplast thickness, length and area were also significantly larger in full sunlight (2.1 µm, 5.1 µm, 15.2 µm2; respectively) and shaded plants (2.0 µm, 5.2 µm, 14.8 µm2; respectively) during wetter months. Croton blanchetianus exhibits seasonal plasticity in leaf structure, presumably to optimize water use efficiency during seasons of water abundance and deficit. These results suggest that the species is adaptable to the increased drought stress projected by climate change scenarios.


Subject(s)
Adaptation, Physiological , Croton/growth & development , Plant Leaves/growth & development , Rain , Seasons , Brazil , Croton/anatomy & histology , Droughts , Forests , Plant Leaves/anatomy & histology
12.
J Pharmacol Toxicol Methods ; 111: 107086, 2021.
Article in English | MEDLINE | ID: mdl-34119674

ABSTRACT

INTRODUCTION: People with epilepsy are at heightened risk of sudden death compared to the general population. The leading cause of epilepsy-related premature mortality is a sudden unexpected death in epilepsy (SUDEP). The mechanism of SUDEP remains largely unresolved and the lack of preclinical models to study the potential mechanism underlying SUDEP is a problem. METHOD: By combining electroencephalographic (EEG) and electrocardiogram (ECG) measurements within a well described LQT1 dog model, we investigated the effect of the proconvulsive compound pentylenetetrazol (PTZ), and its link to the induction of Torsades de Pointes (TdP). RESULTS: Pre-treatment with the potent and selective IKs blocker JNJ 282 induced a pronounced QT (QTc) prolongation in anaesthetized dogs (Long QT syndrome type 1 or LQT1 group) compared to dogs that were not treated (control group). Subsequent PTZ administration induced spiking on the EEG signal and seizures in both groups, but only R-on-T, salvo and TdP were observed in dogs of the LQT1 group. CONCLUSION: Our results show that a proconvulsive drug can trigger TdP-like cardiac arrhythmias, in conditions of compromised repolarization in the heart (Iks blockade). In man, TdP arrythmia's can often lead to ventricular fibrillation (VF) and sudden death. This observation suggests that long QT-intervals (genetic or drug induced) could potentially be one of the risk factors for SUDEP in epileptic patients.


Subject(s)
Long QT Syndrome , Pharmaceutical Preparations , Torsades de Pointes , Animals , Dogs , Electrocardiography , Humans , Long QT Syndrome/chemically induced , Seizures/chemically induced , Torsades de Pointes/chemically induced
13.
Front Pharmacol ; 12: 604713, 2021.
Article in English | MEDLINE | ID: mdl-33841140

ABSTRACT

Objectives: Improvements in human stem cell-derived cardiomyocyte (hSC-CM) technology have promoted their use for drug testing and disease investigations. Several in silico hSC-CM models have been proposed to augment interpretation of experimental findings through simulations. This work aims to assess the response of three hSC-CM in silico models (Koivumäki2018, Kernik2019, and Paci2020) to simulated drug action, and compare simulation results against in vitro data for 15 drugs. Methods: First, simulations were conducted considering 15 drugs, using a simple pore-block model and experimental data for seven ion channels. Similarities and differences were analyzed in the in silico responses of the three models to drugs, in terms of Ca2+ transient duration (CTD90) and occurrence of arrhythmic events. Then, the sensitivity of each model to different degrees of blockage of Na+ (INa), L-type Ca2+ (ICaL), and rapid delayed rectifying K+ (IKr) currents was quantified. Finally, we compared the drug-induced effects on CTD90 against the corresponding in vitro experiments. Results: The observed CTD90 changes were overall consistent among the in silico models, all three showing changes of smaller magnitudes compared to the ones measured in vitro. For example, sparfloxacin 10 µM induced +42% CTD90 prolongation in vitro, and +17% (Koivumäki2018), +6% (Kernik2019), and +9% (Paci2020) in silico. Different arrhythmic events were observed following drug application, mainly for drugs affecting IKr. Paci2020 and Kernik2019 showed only repolarization failure, while Koivumäki2018 also displayed early and delayed afterdepolarizations. The spontaneous activity was suppressed by Na+ blockers and by drugs with similar effects on ICaL and IKr in Koivumäki2018 and Paci2020, while only by strong ICaL blockers, e.g. nisoldipine, in Kernik2019. These results were confirmed by the sensitivity analysis. Conclusion: To conclude, The CTD90 changes observed in silico are qualitatively consistent with our in vitro data, although our simulations show differences in drug responses across the hSC-CM models, which could stem from variability in the experimental data used in their construction.

14.
Channels (Austin) ; 15(1): 239-252, 2021 12.
Article in English | MEDLINE | ID: mdl-33465001

ABSTRACT

Human-induced pluripotent stem cell (hiPSC) and stem cell (hSC) derived cardiomyocytes (CM) are gaining popularity as in vitro model for cardiology and pharmacology studies. A remaining flaw of these cells, as shown by single-cell electrophysiological characterization, is a more depolarized resting membrane potential (RMP) compared to native CM. Most reports attribute this to a lower expression of the Kir2.1 potassium channel that generates the IK1 current. However, most RMP recordings are obtained from isolated hSC/hiPSC-CMs whereas in a more native setting these cells are interconnected with neighboring cells by connexin-based gap junctions, forming a syncytium. Hereby, these cells are electrically connected and the total pool of IK1 increases. Therefore, the input resistance (Ri) of interconnected cells is lower than that of isolated cells. During patch clamp experiments pipettes need to be well attached or sealed to the cell, which is reflected in the seal resistance (Rs), because a nonspecific ionic current can leak through this pipette-cell contact or seal and balance out small currents within the cell such as IK1. By recording the action potential of isolated hSC-CMs and that of hSC-CMs cultured in small monolayers, we show that the RMP of hSC-CMs in monolayer is approximately -20 mV more hyperpolarized compared to isolated cells. Accordingly, adding carbenoxolone, a connexin channel blocker, isolates the cell that is patch clamped from its neighboring cells of the monolayer and depolarizes the RMP. The presented data show that the recorded RMP of hSC-CMs in a syncytium is more negative than that determined from isolated hSC/hiPSC-CMs, most likely because the active pool of Kir2.1 channels increased.


Subject(s)
Myocytes, Cardiac , Giant Cells , Membrane Potentials , Patch-Clamp Techniques , Potassium
15.
Clin Pharmacol Ther ; 109(6): 1606-1617, 2021 06.
Article in English | MEDLINE | ID: mdl-33283267

ABSTRACT

Drugs that prolong QT may cause torsade de pointes (TdP). However, translation of nonclinical assessment of QT prolongation or hERG channel, targeted by QT-prolonging drugs, into clinical TdP risk has been insufficient to date. In this blinded study, we confirmed the utility of a Normalized TdP Score System in predicting drug-induced TdP risks among 34 drugs, including 28 with low, intermediate, and high TdP risks under the Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative plus six compounds with names blinded to the investigators, using the rabbit ventricular wedge assay. Concentration-dependent TdP scores were determined by drug-induced changes in QT, Tp-e , and proarrhythmias. Disclosure of the names and testing concentrations was made after completion of the experiments and report to the sponsors. Drugs' normalized TdP scores were calculated thereafter based on their respective free clinical maximum concentration (Cmax ). Drugs' normalized TdP scores were calculated and ranked for 33 drugs, excluding 1 investigational drug, and the TdP risks of the 28 CiPA drugs were correctly distinguished according to their respective categories of low, intermediate, and high TdP risks under the CiPA initiative. Accordingly, we are able to propose the cutoff values of the normalized TdP scores at 1 × Cmax : ≤ 0, > 0 to < 0.65 and ≥ 0.65, respectively, for low, intermediate, and high risk. This blinded study supports utility of our Normalized TdP Score System in predicting drug-induced TdP risks in 33 drugs, including 28 used for characterization of other assays under the CiPA initiative. However, these results need to be replicated in other laboratories.


Subject(s)
Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/epidemiology , Torsades de Pointes/chemically induced , Torsades de Pointes/epidemiology , Animals , Drug Evaluation, Preclinical , Electrocardiography , Heart Ventricles/physiopathology , Long QT Syndrome/chemically induced , Rabbits , Risk Assessment
16.
Eur J Pharmacol ; 858: 172474, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31238068

ABSTRACT

The Kv7 family of voltage-dependent non-inactivating potassium channels is composed of five members, of which four are expressed in the CNS. Kv7.2, 7.3 and 7.5 are responsible for the M-current, which plays a critical role in the regulation of neuronal excitability. Stimulation of M1 muscarinic acetylcholine receptor, M1 receptor, increases neuronal excitability by suppressing the M-current generated by the Kv7 channel family. The M-current modulation via M1 receptor is well-described in in vitro assays using cell lines and in native rodent tissue. However, this mechanism was not yet reported in human induced pluripotent stem cells (hiPSC) derived neurons. In the present study, we investigated the effects of both agonists and antagonists of Kv7.2/7.3 channel and M1 receptor in hiPSC derived neurons and in primary rat cortical neuronal cells. The role of M1 receptors in the modulation of neuronal excitability could be demonstrated in both rat primary and hiPSC neurons. The M1 receptors agonist, xanomeline, increased neuronal excitability in both rat cortical and the hiPSC neuronal cells. Furthermore, M1 receptor agonist-induced neuronal excitability in vitro was reduced by an agonist of Kv7.2/7.3 in both neuronal cells. These results show that hiPSC derived neurons recreate the modulation of the M-current by the muscarinic receptor in hiPSC neurons similarly to rat native neurons. Thus, hiPSC neurons could be a useful human-based cell assay for characterization of drugs that affect neuronal excitability and/or induce seizure activity by modulation of M1 receptors or inhibition of Kv7 channels.


Subject(s)
Electrophysiological Phenomena , Induced Pluripotent Stem Cells/cytology , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/metabolism , Neurons/cytology , Receptor, Muscarinic M1/metabolism , Animals , Electrophysiological Phenomena/drug effects , Gene Expression Regulation/drug effects , Humans , KCNQ2 Potassium Channel/agonists , KCNQ2 Potassium Channel/antagonists & inhibitors , KCNQ2 Potassium Channel/genetics , KCNQ3 Potassium Channel/agonists , KCNQ3 Potassium Channel/antagonists & inhibitors , KCNQ3 Potassium Channel/genetics , Muscarinic Antagonists/pharmacology , Neurons/drug effects , Neurons/metabolism , Potassium Channel Blockers/pharmacology , Rats , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/antagonists & inhibitors
17.
Toxicol Sci ; 170(2): 345-356, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31020317

ABSTRACT

The goal of this research consortium including Janssen, MSD, Ncardia, FNCR/LBR, and Health and Environmental Sciences Institute (HESI) was to evaluate the utility of an additional in vitro assay technology to detect potential drug-induced long QT and torsade de pointes (TdP) risk by monitoring cytosolic free Ca2+ transients in human stem-cell-derived cardiomyocytes (hSC-CMs). The potential proarrhythmic risks of the 28 comprehensive in vitro proarrhythmia assay (CiPA) drugs linked to low, intermediate, and high clinical TdP risk were evaluated in a blinded manner using Ca2+-sensitive fluorescent dye assay recorded from a kinetic plate reader system (Hamamatsu FDSS/µCell and FDSS7000) in 2D cultures of 2 commercially available hSC-CM lines (Cor.4U and CDI iCell Cardiomyocytes) at 3 different test sites. The Ca2+ transient assay, performed at the 3 sites using the 2 different hSC-CMs lines, correctly detected potential drug-induced QT prolongation among the 28 CiPA drugs and detected cellular arrhythmias-like/early afterdepolarization in 7 of 8 high TdP-risk drugs (87.5%), 6 of 11 intermediate TdP-risk drugs (54.5%), and 0 of 9 low/no TdP-risk drugs (0%). The results were comparable among the 3 sites and from 2 hSC-CM cell lines. The Ca2+ transient assay can serve as a user-friendly and higher throughput alternative to complement the microelectrode array and voltage-sensing optical action potential recording assays used in the HESI-CiPA study for in vitro assessment of drug-induced long QT and TdP risk.


Subject(s)
Arrhythmias, Cardiac/chemically induced , Calcium/metabolism , Long QT Syndrome/chemically induced , Myocytes, Cardiac/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Myocytes, Cardiac/metabolism , Risk , Stem Cells/cytology
18.
Front Pharmacol ; 10: 1374, 2019.
Article in English | MEDLINE | ID: mdl-31920633

ABSTRACT

The cardiac Nav1.5 mediated sodium current (INa) generates the upstroke of the action potential in atrial and ventricular myocytes. Drugs that modulate this current can therefore be antiarrhythmic or proarrhythmic, which requires preclinical evaluation of their potential drug-induced inhibition or modulation of Nav1.5. Since Nav1.5 assembles with, and is modulated by, the auxiliary ß1-subunit, this subunit can also affect the channel's pharmacological response. To investigate this, the effect of known Nav1.5 inhibitors was compared between COS-7 cells expressing Nav1.5 or Nav1.5+ß1 using whole-cell voltage clamp experiments. For the open state class Ia blockers ajmaline and quinidine, and class Ic drug flecainide, the affinity did not differ between both models. For class Ib drugs phenytoin and lidocaine, which are inactivated state blockers, the affinity decreased more than a twofold when ß1 was present. Thus, ß1 did not influence the affinity for the class Ia and Ic compounds but it did so for the class Ib drugs. Human stem cell-derived cardiomyocytes (hSC-CMs) are a promising translational cell source for in vitro models that express a representative repertoire of channels and auxiliary proteins, including ß1. Therefore, we subsequently evaluated the same drugs for their response on the INa in hSC-CMs. Consequently, it was expected and confirmed that the drug response of INa in hSC-CMs compares best to INa expressed by Nav1.5+ß1.

19.
J Electrocardiol ; 51(6): 1077-1083, 2018.
Article in English | MEDLINE | ID: mdl-30497734

ABSTRACT

INTRODUCTION: Preventing sudden cardiac death (SCD) is one of the main goals in hypertrophic cardiomyopathy (HCM). Many variables have been proposed, however the European and American guidelines do not incorporate any ECG or Holter monitoring derived variables other than the presence of ventricular arrhythmia in their risk stratification models. In the present study we evaluated electrocardiographic parameters in risk stratification of HCM. METHODS AND RESULTS: Novel electrocardiographic parameters including the index of cardio-electrophysiological balance (iCEB), individualized QT correction (QTi) and QT rate dependence were evaluated along with established risk factors. A composite endpoint of SCD was defined as out of hospital cardiac arrest, appropriate ICD shock and sustained ventricular tachycardia. Cox regression analysis was used to evaluate predictors of SCD. Out of the 466 HCM patients, 31 reached the composite endpoint during a follow up of 75 ±â€¯86 months. In a multivariate model, nor iCEB, QTi or QT rate dependence were predictors of SCD. Only male gender (p < 0.01; OR 13.1; CI 1.74-98.83), negative T waves in the inferior leads (p = 0.04; OR 2.51; CI 1.03-6.13) and familial sudden death (p < 0.01; OR 3.03; CI 1.39-6.59) were significant predictors. On top of either the ESC risk score or the 3 traditional 'American risk factors', only male gender was a significant predictor of SCD. CONCLUSION: No ECG or Holter monitoring parameters added in risk stratification for SCD in HCM. However, male gender and negative T waves in the inferior leads are promising novel markers to evaluate in larger cohorts.


Subject(s)
Cardiomyopathy, Hypertrophic/physiopathology , Electrocardiography , Adult , Cardiomyopathy, Hypertrophic/complications , Death, Sudden, Cardiac/etiology , Electrocardiography, Ambulatory , Female , Humans , Male , Middle Aged , Prognosis , Proportional Hazards Models , Retrospective Studies , Risk Assessment/methods , Risk Factors , Sex Factors , Software
20.
Stem Cell Reports ; 11(6): 1365-1377, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30540961

ABSTRACT

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising cardiac safety platform, demonstrated by numerous validation studies using drugs with known cardiac adverse effects in humans. However, the challenge remains to implement hiPSC-CMs into cardiac de-risking of new chemical entities (NCEs) during preclinical drug development. Here, we used the calcium transient screening assay in hiPSC-CMs to develop a hazard score system for cardiac electrical liabilities. Tolerance interval calculations and evaluation of different classes of cardio-active drugs enabled us to develop a weighted scoring matrix. This approach allowed the translation of various pharmacological effects in hiPSC-CMs into a single hazard label (no, low, high, or very high hazard). Evaluation of 587 internal NCEs and good translation to ex vivo and in vivo models for a subset of these NCEs highlight the value of the cardiac hazard scoring in facilitating the selection of compounds during early drug safety screening.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/diagnosis , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Algorithms , Calcium Signaling , Drug Discovery , Humans , Reference Standards , Reproducibility of Results , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...