Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Cancer Discov ; 13(8): 1826-1843, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37449843

ABSTRACT

Germline BRCA-associated pancreatic ductal adenocarcinoma (glBRCA PDAC) tumors are susceptible to platinum and PARP inhibition. The clinical outcomes of 125 patients with glBRCA PDAC were stratified based on the spectrum of response to platinum/PARP inhibition: (i) refractory [overall survival (OS) <6 months], (ii) durable response followed by acquired resistance (OS <36 months), and (iii) long-term responders (OS >36 months). Patient-derived xenografts (PDX) were generated from 25 patients with glBRCA PDAC at different clinical time points. Response to platinum/PARP inhibition in vivo and ex vivo culture (EVOC) correlated with clinical response. We deciphered the mechanisms of resistance in glBRCA PDAC and identified homologous recombination (HR) proficiency and secondary mutations restoring partial functionality as the most dominant resistant mechanism. Yet, a subset of HR-deficient (HRD) patients demonstrated clinical resistance. Their tumors displayed basal-like molecular subtype and were more aneuploid. Tumor mutational burden was high in HRD PDAC and significantly higher in tumors with secondary mutations. Anti-PD-1 attenuated tumor growth in a novel humanized glBRCA PDAC PDX model. This work demonstrates the utility of preclinical models, including EVOC, to predict the response of glBRCA PDAC to treatment, which has the potential to inform time-sensitive medical decisions. SIGNIFICANCE: glBRCA PDAC has a favorable response to platinum/PARP inhibition. However, most patients develop resistance. Additional treatment options for this unique subpopulation are needed. We generated model systems in PDXs and an ex vivo system (EVOC) that faithfully recapitulate these specific clinical scenarios as a platform to investigate the mechanisms of resistance for further drug development. This article is highlighted in the In This Issue feature, p. 1749.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Platinum/pharmacology , Platinum/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Mutation , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms
2.
Cancer Epidemiol Biomarkers Prev ; 32(9): 1265-1269, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37351909

ABSTRACT

BACKGROUND: There are conflicting data on whether nonalcoholic fatty liver disease (NAFLD) is associated with susceptibility to pancreatic cancer. Using Mendelian randomization (MR), we investigated the relationship between genetic predisposition to NAFLD and risk for pancreatic cancer. METHODS: Data from genome-wide association studies (GWAS) within the Pancreatic Cancer Cohort Consortium (PanScan; cases n = 5,090, controls n = 8,733) and the Pancreatic Cancer Case Control Consortium (PanC4; cases n = 4,163, controls n = 3,792) were analyzed. We used data on 68 genetic variants with four different MR methods [inverse variance weighting (IVW), MR-Egger, simple median, and penalized weighted median] separately to predict genetic heritability of NAFLD. We then assessed the relationship between each of the four MR methods and pancreatic cancer risk, using logistic regression to calculate ORs and 95% confidence intervals (CI), adjusting for PC risk factors, including obesity and diabetes. RESULTS: No association was found between genetically predicted NAFLD and pancreatic cancer risk in the PanScan or PanC4 samples [e.g., PanScan, IVW OR, 1.04; 95% confidence interval (CI), 0.88-1.22; MR-Egger OR, 0.89; 95% CI, 0.65-1.21; PanC4, IVW OR, 1.07; 95% CI, 0.90-1.27; MR-Egger OR, 0.93; 95% CI, 0.67-1.28]. None of the four MR methods indicated an association between genetically predicted NAFLD and pancreatic cancer risk in either sample. CONCLUSIONS: Genetic predisposition to NAFLD is not associated with pancreatic cancer risk. IMPACT: Given the close relationship between NAFLD and metabolic conditions, it is plausible that any association between NAFLD and pancreatic cancer might reflect host metabolic perturbations (e.g., obesity, diabetes, or metabolic syndrome) and does not necessarily reflect a causal relationship between NAFLD and pancreatic cancer.


Subject(s)
Non-alcoholic Fatty Liver Disease , Pancreatic Neoplasms , Humans , Non-alcoholic Fatty Liver Disease/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Pancreatic Neoplasms/genetics , Obesity , Polymorphism, Single Nucleotide
3.
J Gastroenterol ; 58(3): 229-245, 2023 03.
Article in English | MEDLINE | ID: mdl-36648535

ABSTRACT

BACKGROUND: The pathogenic effect of colorectal tumor molecular features may be influenced by several factors, including those related to microbiota, inflammation, metabolism, and epigenetics, which may change along colorectal segments. We hypothesized that the prognostic association of colon cancer location might differ by tumor molecular characteristics. METHODS: Utilizing a consortium dataset of 13,101 colorectal cancer cases, including 2994 early-onset cases, we conducted survival analyses of detailed tumor location stratified by statuses of microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and KRAS and BRAF oncogenic mutation. RESULTS: There was a statistically significant trend for better colon cancer-specific survival in relation to tumor location from the cecum to sigmoid colon (Ptrend = 0.002), excluding the rectum. The prognostic association of colon location differed by MSI status (Pinteraction = 0.001). Non-MSI-high tumors exhibited the cecum-to-sigmoid trend for better colon cancer-specific survival [Ptrend < 0.001; multivariable hazard ratio (HR) for the sigmoid colon (vs. cecum), 0.80; 95% confidence interval (CI) 0.70-0.92], whereas MSI-high tumors demonstrated a suggestive cecum-to-sigmoid trend for worse survival (Ptrend = 0.020; the corresponding HR, 2.13; 95% CI 1.15-3.92). The prognostic association of colon tumor location also differed by CIMP status (Pinteraction = 0.003) but not significantly by age, stage, or other features. Furthermore, MSI-high status was a favorable prognostic indicator in all stages. CONCLUSIONS: Both detailed colonic location and tumor molecular features need to be accounted for colon cancer prognostication to advance precision medicine. Our study indicates the important role of large-scale studies to robustly examine detailed colonic subsites in molecular oncology research.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Prognosis , Proto-Oncogene Proteins B-raf/genetics , DNA Methylation , Mutation , Colorectal Neoplasms/pathology , Colonic Neoplasms/pathology , Phenotype , Microsatellite Instability , CpG Islands/genetics
4.
Cancer Epidemiol Biomarkers Prev ; 32(3): 353-362, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36622766

ABSTRACT

BACKGROUND: Polygenic risk scores (PRS) which summarize individuals' genetic risk profile may enhance targeted colorectal cancer screening. A critical step towards clinical implementation is rigorous external validations in large community-based cohorts. This study externally validated a PRS-enhanced colorectal cancer risk model comprising 140 known colorectal cancer loci to provide a comprehensive assessment on prediction performance. METHODS: The model was developed using 20,338 individuals and externally validated in a community-based cohort (n = 85,221). We validated predicted 5-year absolute colorectal cancer risk, including calibration using expected-to-observed case ratios (E/O) and calibration plots, and discriminatory accuracy using time-dependent AUC. The PRS-related improvement in AUC, sensitivity and specificity were assessed in individuals of age 45 to 74 years (screening-eligible age group) and 40 to 49 years with no endoscopy history (younger-age group). RESULTS: In European-ancestral individuals, the predicted 5-year risk calibrated well [E/O = 1.01; 95% confidence interval (CI), 0.91-1.13] and had high discriminatory accuracy (AUC = 0.73; 95% CI, 0.71-0.76). Adding the PRS to a model with age, sex, family and endoscopy history improved the 5-year AUC by 0.06 (P < 0.001) and 0.14 (P = 0.05) in the screening-eligible age and younger-age groups, respectively. Using a risk-threshold of 5-year SEER colorectal cancer incidence rate at age 50 years, adding the PRS had a similar sensitivity but improved the specificity by 11% (P < 0.001) in the screening-eligible age group. In the younger-age group it improved the sensitivity by 27% (P = 0.04) with similar specificity. CONCLUSIONS: The proposed PRS-enhanced model provides a well-calibrated 5-year colorectal cancer risk prediction and improves discriminatory accuracy in the external cohort. IMPACT: The proposed model has potential utility in risk-stratified colorectal cancer prevention.


Subject(s)
Colorectal Neoplasms , Humans , Middle Aged , Aged , Risk Factors , Colorectal Neoplasms/epidemiology , Risk Assessment
5.
Am J Gastroenterol ; 118(4): 712-726, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36707929

ABSTRACT

INTRODUCTION: Early-onset colorectal cancer diagnosed before the age of 50 years has been increasing. Likely reflecting the pathogenic role of the intestinal microbiome, which gradually changes across the entire colorectal length, the prevalence of certain tumor molecular characteristics gradually changes along colorectal subsites. Understanding how colorectal tumor molecular features differ by age and tumor location is important in personalized patient management. METHODS: Using 14,004 cases with colorectal cancer including 3,089 early-onset cases, we examined microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and KRAS and BRAF mutations in carcinomas of the cecum, ascending colon, transverse colon, descending colon, sigmoid colon, and rectum and compared early-onset cases with later-onset cases. RESULTS: The proportions of MSI-high, CIMP-high, and BRAF -mutated early-onset tumors were lowest in the rectum (8.8%, 3.4%, and 3.5%, respectively) and highest in the ascending colon (46% MSI-high; 15% CIMP-high) or transverse colon (8.6% BRAF -mutated) (all Ptrend <0.001 across the rectum to ascending colon). Compared with later-onset tumors, early-onset tumors showed a higher prevalence of MSI-high status and a lower prevalence of CIMP-high status and BRAF mutations in most subsites. KRAS mutation prevalence was higher in the cecum compared with that in the other subsites in both early-onset and later-onset tumors ( P < 0.001). Notably, later-onset MSI-high tumors showed a continuous decrease in KRAS mutation prevalence from the rectum (36%) to ascending colon (9%; Ptrend <0.001), followed by an increase in the cecum (14%), while early-onset MSI-high cancers showed no such trend. DISCUSSION: Our findings support biogeographical and pathogenic heterogeneity of colorectal carcinomas in different colorectal subsites and age groups.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , DNA Methylation , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mutation , Phenotype , CpG Islands , Microsatellite Instability
6.
Sci Rep ; 12(1): 18852, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344807

ABSTRACT

Observational studies have shown higher folate consumption to be associated with lower risk of colorectal cancer (CRC). Understanding whether and how genetic risk factors interact with folate could further elucidate the underlying mechanism. Aggregating functionally relevant genetic variants in set-based variant testing has higher power to detect gene-environment (G × E) interactions and may provide information on the underlying biological pathway. We investigated interactions between folate consumption and predicted gene expression on colorectal cancer risk across the genome. We used variant weights from the PrediXcan models of colon tissue-specific gene expression as a priori variant information for a set-based G × E approach. We harmonized total folate intake (mcg/day) based on dietary intake and supplemental use across cohort and case-control studies and calculated sex and study specific quantiles. Analyses were performed using a mixed effects score tests for interactions between folate and genetically predicted expression of 4839 genes with available genetically predicted expression. We pooled results across 23 studies for a total of 13,498 cases with colorectal tumors and 13,918 controls of European ancestry. We used a false discovery rate of 0.2 to identify genes with suggestive evidence of an interaction. We found suggestive evidence of interaction with folate intake on CRC risk for genes including glutathione S-Transferase Alpha 1 (GSTA1; p = 4.3E-4), Tonsuko Like, DNA Repair Protein (TONSL; p = 4.3E-4), and Aspartylglucosaminidase (AGA: p = 4.5E-4). We identified three genes involved in preventing or repairing DNA damage that may interact with folate consumption to alter CRC risk. Glutathione is an antioxidant, preventing cellular damage and is a downstream metabolite of homocysteine and metabolized by GSTA1. TONSL is part of a complex that functions in the recovery of double strand breaks and AGA plays a role in lysosomal breakdown of glycoprotein.


Subject(s)
Colorectal Neoplasms , Folic Acid , Humans , Folic Acid/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Case-Control Studies , Risk , Gene Expression , Risk Factors , NF-kappa B/genetics
7.
Gastroenterology ; 163(6): 1531-1546.e8, 2022 12.
Article in English | MEDLINE | ID: mdl-35985511

ABSTRACT

BACKGROUND & AIMS: To examine whether quantitative pathologic analysis of digitized hematoxylin and eosin slides of colorectal carcinoma (CRC) correlates with clinicopathologic features, molecular alterations, and prognosis. METHODS: A quantitative segmentation algorithm (QuantCRC) was applied to 6468 digitized hematoxylin and eosin slides of CRCs. Fifteen parameters were recorded from each image and tested for associations with clinicopathologic features and molecular alterations. A prognostic model was developed to predict recurrence-free survival using data from the internal cohort (n = 1928) and validated on an internal test (n = 483) and external cohort (n = 938). RESULTS: There were significant differences in QuantCRC according to stage, histologic subtype, grade, venous/lymphatic/perineural invasion, tumor budding, CD8 immunohistochemistry, mismatch repair status, KRAS mutation, BRAF mutation, and CpG methylation. A prognostic model incorporating stage, mismatch repair, and QuantCRC resulted in a Harrell's concordance (c)-index of 0.714 (95% confidence interval [CI], 0.702-0.724) in the internal test and 0.744 (95% CI, 0.741-0.754) in the external cohort. Removing QuantCRC from the model reduced the c-index to 0.679 (95% CI, 0.673-0.694) in the external cohort. Prognostic risk groups were identified, which provided a hazard ratio of 2.24 (95% CI, 1.33-3.87, P = .004) for low vs high-risk stage III CRCs and 2.36 (95% CI, 1.07-5.20, P = .03) for low vs high-risk stage II CRCs, in the external cohort after adjusting for established risk factors. The predicted median 36-month recurrence rate for high-risk stage III CRCs was 32.7% vs 13.4% for low-risk stage III and 15.8% for high-risk stage II vs 5.4% for low-risk stage II CRCs. CONCLUSIONS: QuantCRC provides a powerful adjunct to routine pathologic reporting of CRC. A prognostic model using QuantCRC improves prediction of recurrence-free survival.


Subject(s)
Colorectal Neoplasms , Testicular Neoplasms , Humans , Male , Colorectal Neoplasms/genetics , DNA Mismatch Repair , Eosine Yellowish-(YS) , Hematoxylin
8.
Sci Rep ; 12(1): 127, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996992

ABSTRACT

Identification of new genetic markers may improve the prediction of colorectal cancer prognosis. Our objective was to examine genome-wide associations of germline genetic variants with disease-specific survival in an analysis of 16,964 cases of colorectal cancer. We analyzed genotype and colorectal cancer-specific survival data from a consortium of 15 studies. Approximately 7.5 million SNPs were examined under the log-additive model using Cox proportional hazards models, adjusting for clinical factors and principal components. Additionally, we ran secondary analyses stratifying by tumor site and disease stage. We used a genome-wide p-value threshold of 5 × 10-8 to assess statistical significance. No variants were statistically significantly associated with disease-specific survival in the full case analysis or in the stage-stratified analyses. Three SNPs were statistically significantly associated with disease-specific survival for cases with tumors located in the distal colon (rs698022, HR = 1.48, CI 1.30-1.69, p = 8.47 × 10-9) and the proximal colon (rs189655236, HR = 2.14, 95% CI 1.65-2.77, p = 9.19 × 10-9 and rs144717887, HR = 2.01, 95% CI 1.57-2.58, p = 3.14 × 10-8), whereas no associations were detected for rectal tumors. Findings from this large genome-wide association study highlight the potential for anatomical-site-stratified genome-wide studies to identify germline genetic risk variants associated with colorectal cancer-specific survival. Larger sample sizes and further replication efforts are needed to more fully interpret these findings.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Genetic Loci , Polymorphism, Single Nucleotide , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Databases, Genetic , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Neoplasm Staging , Risk Assessment , Risk Factors , Young Adult
9.
Int J Cancer ; 150(9): 1447-1454, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34888857

ABSTRACT

Elevated blood levels of C-reactive protein (CRP) have been linked to colorectal cancer (CRC) survival. We evaluated genetic variants associated with CRP levels and their interactions with sex and lifestyle factors in association with CRC-specific mortality. Our study included 16 142 CRC cases from the International Survival Analysis in Colorectal Cancer Consortium. We identified 618 common single nucleotide polymorphisms (SNPs) associated with CRP levels from the NHGRI-EBI GWAS Catalog. Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for associations between SNPs and CRC-specific mortality adjusting for age, sex, genotyping platform/study and principal components. We investigated their interactions with sex and lifestyle factors using likelihood ratio tests. Of 5472 (33.9%) deaths accrued over up to 10 years of follow-up, 3547 (64.8%) were due to CRC. No variants were associated with CRC-specific mortality after multiple comparison correction. We observed strong evidence of interaction between variant rs1933736 at FRK gene and sex in relation to CRC-specific mortality (corrected Pinteraction  = .0004); women had higher CRC-specific mortality associated with the minor allele (HR = 1.11, 95% CI = 1.04-1.19) whereas an inverse association was observed for men (HR = 0.88, 95% CI = 0.82-0.94). There was no evidence of interactions between CRP-associated SNPs and alcohol, obesity or smoking. Our study observed a significant interaction between sex and a CRP-associated variant in relation to CRC-specific mortality. Future replication of this association and functional annotation of the variant are needed.


Subject(s)
C-Reactive Protein , Colorectal Neoplasms , C-Reactive Protein/analysis , C-Reactive Protein/genetics , Female , Humans , Life Style , Male , Polymorphism, Single Nucleotide , Risk Factors , Survival Analysis
10.
JNCI Cancer Spectr ; 5(4)2021 08.
Article in English | MEDLINE | ID: mdl-34377935

ABSTRACT

Background: Smoking is associated with colorectal cancer (CRC) risk. Previous studies suggested this association may be restricted to certain molecular subtypes of CRC, but large-scale comprehensive analysis is lacking. Methods: A total of 9789 CRC cases and 11 231 controls of European ancestry from 11 observational studies were included. We harmonized smoking variables across studies and derived sex study-specific quartiles of pack-years of smoking for analysis. Four somatic colorectal tumor markers were assessed individually and in combination, including BRAF mutation, KRAS mutation, CpG island methylator phenotype (CIMP), and microsatellite instability (MSI) status. A multinomial logistic regression analysis was used to assess the association between smoking and risk of CRC subtypes by molecular characteristics, adjusting for age, sex, and study. All statistical tests were 2-sided and adjusted for Bonferroni correction. Results: Heavier smoking was associated with higher risk of CRC overall and stratified by individual markers (P trend < .001). The associations differed statistically significantly between all molecular subtypes, which was the most statistically significant for CIMP and BRAF. Compared with never-smokers, smokers in the fourth quartile of pack-years had a 90% higher risk of CIMP-positive CRC (odds ratio = 1.90, 95% confidence interval = 1.60 to 2.26) but only 35% higher risk for CIMP-negative CRC (odds ratio = 1.35, 95% confidence interval = 1.22 to 1.49; P difference = 2.1 x 10-6). The association was also stronger in tumors that were CIMP positive, MSI high, or KRAS wild type when combined (P difference < .001). Conclusion: Smoking was associated with differential risk of CRC subtypes defined by molecular characteristics. Heavier smokers had particularly higher risk of CRC subtypes that were CIMP positive and MSI high in combination, suggesting that smoking may be involved in the development of colorectal tumors via the serrated pathway.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Microsatellite Instability , Mutation , Smoking/adverse effects , Age Factors , Case-Control Studies , CpG Islands/genetics , Female , Genes, ras/genetics , Genetic Markers/genetics , Humans , Logistic Models , Male , Methylation , Non-Smokers , Observational Studies as Topic , Phenotype , Proto-Oncogene Proteins B-raf/genetics , Sex Factors , Smokers
11.
Am J Clin Nutr ; 113(6): 1490-1502, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33740060

ABSTRACT

BACKGROUND: The literature on associations of circulating concentrations of minerals and vitamins with risk of colorectal cancer is limited and inconsistent. Evidence from randomized controlled trials (RCTs) to support the efficacy of dietary modification or nutrient supplementation for colorectal cancer prevention is also limited. OBJECTIVES: To complement observational and RCT findings, we investigated associations of genetically predicted concentrations of 11 micronutrients (ß-carotene, calcium, copper, folate, iron, magnesium, phosphorus, selenium, vitamin B-6, vitamin B-12, and zinc) with colorectal cancer risk using Mendelian randomization (MR). METHODS: Two-sample MR was conducted using 58,221 individuals with colorectal cancer and 67,694 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry. Inverse variance-weighted MR analyses were performed with sensitivity analyses to assess the impact of potential violations of MR assumptions. RESULTS: Nominally significant associations were noted for genetically predicted iron concentration and higher risk of colon cancer [ORs per SD (ORSD): 1.08; 95% CI: 1.00, 1.17; P value = 0.05] and similarly for proximal colon cancer, and for vitamin B-12 concentration and higher risk of colorectal cancer (ORSD: 1.12; 95% CI: 1.03, 1.21; P value = 0.01) and similarly for colon cancer. A nominally significant association was also noted for genetically predicted selenium concentration and lower risk of colon cancer (ORSD: 0.98; 95% CI: 0.96, 1.00; P value = 0.05) and similarly for distal colon cancer. These associations were robust to sensitivity analyses. Nominally significant inverse associations were observed for zinc and risk of colorectal and distal colon cancers, but sensitivity analyses could not be performed. None of these findings survived correction for multiple testing. Genetically predicted concentrations of ß-carotene, calcium, copper, folate, magnesium, phosphorus, and vitamin B-6 were not associated with disease risk. CONCLUSIONS: These results suggest possible causal associations of circulating iron and vitamin B-12 (positively) and selenium (inversely) with risk of colon cancer.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Mendelian Randomization Analysis , Micronutrients/administration & dosage , White People , Case-Control Studies , Dietary Supplements , Humans , Risk Factors , Selenium/blood , Vitamin B 12/blood
12.
Gastroenterology ; 160(4): 1164-1178.e6, 2021 03.
Article in English | MEDLINE | ID: mdl-33058866

ABSTRACT

BACKGROUND AND AIMS: Susceptibility genes and the underlying mechanisms for the majority of risk loci identified by genome-wide association studies (GWAS) for colorectal cancer (CRC) risk remain largely unknown. We conducted a transcriptome-wide association study (TWAS) to identify putative susceptibility genes. METHODS: Gene-expression prediction models were built using transcriptome and genetic data from the 284 normal transverse colon tissues of European descendants from the Genotype-Tissue Expression (GTEx), and model performance was evaluated using data from The Cancer Genome Atlas (n = 355). We applied the gene-expression prediction models and GWAS data to evaluate associations of genetically predicted gene-expression with CRC risk in 58,131 CRC cases and 67,347 controls of European ancestry. Dual-luciferase reporter assays and knockdown experiments in CRC cells and tumor xenografts were conducted. RESULTS: We identified 25 genes associated with CRC risk at a Bonferroni-corrected threshold of P < 9.1 × 10-6, including genes in 4 novel loci, PYGL (14q22.1), RPL28 (19q13.42), CAPN12 (19q13.2), MYH7B (20q11.22), and MAP1L3CA (20q11.22). In 9 known GWAS-identified loci, we uncovered 9 genes that have not been reported previously, whereas 4 genes remained statistically significant after adjusting for the lead risk variant of the locus. Through colocalization analysis in GWAS loci, we additionally identified 12 putative susceptibility genes that were supported by TWAS analysis at P < .01. We showed that risk allele of the lead risk variant rs1741640 affected the promoter activity of CABLES2. Knockdown experiments confirmed that CABLES2 plays a vital role in colorectal carcinogenesis. CONCLUSIONS: Our study reveals new putative susceptibility genes and provides new insight into the biological mechanisms underlying CRC development.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Models, Genetic , Alleles , Carcinogenesis/genetics , Case-Control Studies , Cohort Studies , Colorectal Neoplasms/epidemiology , Gene Knockdown Techniques , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , RNA-Seq , Risk Factors , Xenograft Model Antitumor Assays
13.
J Natl Cancer Inst ; 113(1): 38-47, 2021 01 04.
Article in English | MEDLINE | ID: mdl-32324875

ABSTRACT

BACKGROUND: Body mass index (BMI) is a complex phenotype that may interact with genetic variants to influence colorectal cancer risk. METHODS: We tested multiplicative statistical interactions between BMI (per 5 kg/m2) and approximately 2.7 million single nucleotide polymorphisms with colorectal cancer risk among 14 059 colorectal cancer case (53.2% women) and 14 416 control (53.8% women) participants. All analyses were stratified by sex a priori. Statistical methods included 2-step (ie, Cocktail method) and single-step (ie, case-control logistic regression and a joint 2-degree of freedom test) procedures. All statistical tests were two-sided. RESULTS: Each 5 kg/m2 increase in BMI was associated with higher risks of colorectal cancer, less so for women (odds ratio [OR] = 1.14, 95% confidence intervals [CI] = 1.11 to 1.18; P = 9.75 × 10-17) than for men (OR = 1.26, 95% CI = 1.20 to 1.32; P = 2.13 × 10-24). The 2-step Cocktail method identified an interaction for women, but not men, between BMI and a SMAD7 intronic variant at 18q21.1 (rs4939827; Pobserved = .0009; Pthreshold = .005). A joint 2-degree of freedom test was consistent with this finding for women (joint P = 2.43 × 10-10). Each 5 kg/m2 increase in BMI was more strongly associated with colorectal cancer risk for women with the rs4939827-CC genotype (OR = 1.24, 95% CI = 1.16 to 1.32; P = 2.60 × 10-10) than for women with the CT (OR = 1.14, 95% CI = 1.09 to 1.19; P = 1.04 × 10-8) or TT (OR = 1.07, 95% CI = 1.01 to 1.14; P = .02) genotypes. CONCLUSION: These results provide novel insights on a potential mechanism through which a SMAD7 variant, previously identified as a susceptibility locus for colorectal cancer, and BMI may influence colorectal cancer risk for women.


Subject(s)
Body Mass Index , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Smad7 Protein/genetics , Aged , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/pathology , Female , Genome-Wide Association Study , Genotype , Humans , Logistic Models , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk Assessment , Risk Factors
14.
BMC Med ; 18(1): 396, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33327948

ABSTRACT

BACKGROUND: Higher adiposity increases the risk of colorectal cancer (CRC), but whether this relationship varies by anatomical sub-site or by sex is unclear. Further, the metabolic alterations mediating the effects of adiposity on CRC are not fully understood. METHODS: We examined sex- and site-specific associations of adiposity with CRC risk and whether adiposity-associated metabolites explain the associations of adiposity with CRC. Genetic variants from genome-wide association studies of body mass index (BMI) and waist-to-hip ratio (WHR, unadjusted for BMI; N = 806,810), and 123 metabolites from targeted nuclear magnetic resonance metabolomics (N = 24,925), were used as instruments. Sex-combined and sex-specific Mendelian randomization (MR) was conducted for BMI and WHR with CRC risk (58,221 cases and 67,694 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry). Sex-combined MR was conducted for BMI and WHR with metabolites, for metabolites with CRC, and for BMI and WHR with CRC adjusted for metabolite classes in multivariable models. RESULTS: In sex-specific MR analyses, higher BMI (per 4.2 kg/m2) was associated with 1.23 (95% confidence interval (CI) = 1.08, 1.38) times higher CRC odds among men (inverse-variance-weighted (IVW) model); among women, higher BMI (per 5.2 kg/m2) was associated with 1.09 (95% CI = 0.97, 1.22) times higher CRC odds. WHR (per 0.07 higher) was more strongly associated with CRC risk among women (IVW OR = 1.25, 95% CI = 1.08, 1.43) than men (IVW OR = 1.05, 95% CI = 0.81, 1.36). BMI or WHR was associated with 104/123 metabolites at false discovery rate-corrected P ≤ 0.05; several metabolites were associated with CRC, but not in directions that were consistent with the mediation of positive adiposity-CRC relations. In multivariable MR analyses, associations of BMI and WHR with CRC were not attenuated following adjustment for representative metabolite classes, e.g., the univariable IVW OR for BMI with CRC was 1.12 (95% CI = 1.00, 1.26), and this became 1.11 (95% CI = 0.99, 1.26) when adjusting for cholesterol in low-density lipoprotein particles. CONCLUSIONS: Our results suggest that higher BMI more greatly raises CRC risk among men, whereas higher WHR more greatly raises CRC risk among women. Adiposity was associated with numerous metabolic alterations, but none of these explained associations between adiposity and CRC. More detailed metabolomic measures are likely needed to clarify the mechanistic pathways.


Subject(s)
Adiposity/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Metabolome/genetics , Adult , Body Mass Index , Case-Control Studies , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/etiology , Europe/epidemiology , Female , Genetic Predisposition to Disease , Genome-Wide Association Study/statistics & numerical data , Humans , Male , Mendelian Randomization Analysis , Middle Aged , Obesity/complications , Obesity/epidemiology , Obesity/genetics , Obesity/metabolism , Polymorphism, Single Nucleotide , Risk Factors , Sex Factors , Waist-Hip Ratio
15.
JNCI Cancer Spectr ; 4(5): pkaa042, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32923935

ABSTRACT

BACKGROUND: Postmenopausal hormone therapy (HT) is associated with a decreased colorectal cancer (CRC) risk. As CRC is a heterogeneous disease, we evaluated whether the association of HT and CRC differs across etiologically relevant, molecularly defined tumor subtypes and tumor location. METHODS: We pooled data on tumor subtypes (microsatellite instability status, CpG island methylator phenotype status, BRAF and KRAS mutations, pathway: adenoma-carcinoma, alternate, serrated), tumor location (proximal colon, distal colon, rectum), and HT use among 8220 postmenopausal women (3898 CRC cases and 4322 controls) from 8 observational studies. We used multinomial logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CIs) for the association of ever vs never HT use with each tumor subtype compared with controls. Models were adjusted for study, age, body mass index, smoking status, and CRC family history. All statistical tests were 2-sided. RESULTS: Among postmenopausal women, ever HT use was associated with a 38% reduction in overall CRC risk (OR =0.62, 95% CI = 0.56 to 0.69). This association was similar according to microsatellite instability, CpG island methylator phenotype and BRAF or KRAS status. However, the association was attenuated for tumors arising through the serrated pathway (OR = 0.81, 95% CI = 0.66 to 1.01) compared with the adenoma-carcinoma pathway (OR = 0.63, 95% CI = 0.55 to 0.73; P het =.04) and alternate pathway (OR = 0.61, 95% CI = 0.51 to 0.72). Additionally, proximal colon tumors had a weaker association (OR = 0.71, 95% CI = 0.62 to 0.80) compared with rectal (OR = 0.54, 95% CI = 0.46 to 0.63) and distal colon (OR = 0.57, 95% CI = 0.49 to 0.66; P het =.01) tumors. CONCLUSIONS: We observed a strong inverse association between HT use and overall CRC risk, which may predominantly reflect a benefit of HT use for tumors arising through the adenoma-carcinoma and alternate pathways as well as distal colon and rectal tumors.

16.
Cancer Epidemiol Biomarkers Prev ; 29(9): 1800-1808, 2020 09.
Article in English | MEDLINE | ID: mdl-32651213

ABSTRACT

BACKGROUND: Regular use of nonsteroidal anti-inflammatory drugs (NSAID) is associated with lower risk of colorectal cancer. Genome-wide interaction analysis on single variants (G × E) has identified several SNPs that may interact with NSAIDs to confer colorectal cancer risk, but variations in gene expression levels may also modify the effect of NSAID use. Therefore, we tested interactions between NSAID use and predicted gene expression levels in relation to colorectal cancer risk. METHODS: Genetically predicted gene expressions were tested for interaction with NSAID use on colorectal cancer risk among 19,258 colorectal cancer cases and 18,597 controls from 21 observational studies. A Mixed Score Test for Interactions (MiSTi) approach was used to jointly assess G × E effects which are modeled via fixed interaction effects of the weighted burden within each gene set (burden) and residual G × E effects (variance). A false discovery rate (FDR) at 0.2 was applied to correct for multiple testing. RESULTS: Among the 4,840 genes tested, genetically predicted expression levels of four genes modified the effect of any NSAID use on colorectal cancer risk, including DPP10 (PG×E = 1.96 × 10-4), KRT16 (PG×E = 2.3 × 10-4), CD14 (PG×E = 9.38 × 10-4), and CYP27A1 (PG×E = 1.44 × 10-3). There was a significant interaction between expression level of RP11-89N17 and regular use of aspirin only on colorectal cancer risk (PG×E = 3.23 × 10-5). No interactions were observed between predicted gene expression and nonaspirin NSAID use at FDR < 0.2. CONCLUSIONS: By incorporating functional information, we discovered several novel genes that interacted with NSAID use. IMPACT: These findings provide preliminary support that could help understand the chemopreventive mechanisms of NSAIDs on colorectal cancer.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Colorectal Neoplasms/drug therapy , Gene Expression/genetics , Genome-Wide Association Study/methods , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Colorectal Neoplasms/genetics , Female , Humans , Male , Risk Factors
17.
Cancer ; 126(13): 3013-3020, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32307706

ABSTRACT

BACKGROUND: Initiating screening at an earlier age based on cancer family history is one of the primary recommended strategies for the prevention and detection of early-onset colorectal cancer (EOCRC), but data supporting the effectiveness of this approach are limited. The authors assessed the performance of family history-based guidelines for identifying individuals with EOCRC. METHODS: The authors conducted a population-based, case-control study of individuals aged 40 to 49 years with (2473 individuals) and without (772 individuals) incident CRC in the Colon Cancer Family Registry from 1998 through 2007. They estimated the sensitivity and specificity of family history-based criteria jointly recommended by the American Cancer Society, the US Multi-Society Task Force on CRC, and the American College of Radiology in 2008 for early screening, and the age at which each participant could have been recommended screening initiation if these criteria had been applied. RESULTS: Family history-based early screening criteria were met by approximately 25% of cases (614 of 2473 cases) and 10% of controls (74 of 772 controls), with a sensitivity of 25% and a specificity of 90% for identifying EOCRC cases aged 40 to 49 years. Among 614 individuals meeting early screening criteria, 98.4% could have been recommended screening initiation at an age younger than the observed age of diagnosis. CONCLUSIONS: Of CRC cases aged 40 to 49 years, 1 in 4 met family history-based early screening criteria, and nearly all cases who met these criteria could have had CRC diagnosed earlier (or possibly even prevented) if earlier screening had been implemented as per family history-based guidelines. Additional strategies are needed to improve the detection and prevention of EOCRC for individuals not meeting family history criteria for early screening.


Subject(s)
Age Factors , Colorectal Neoplasms/diagnosis , Early Detection of Cancer/methods , Family Health , Practice Guidelines as Topic , Adult , Age of Onset , Case-Control Studies , Early Detection of Cancer/statistics & numerical data , Family Health/statistics & numerical data , Female , Humans , Male , Middle Aged , Retrospective Studies , Sensitivity and Specificity
18.
Cancer Med ; 9(10): 3563-3573, 2020 05.
Article in English | MEDLINE | ID: mdl-32207560

ABSTRACT

BACKGROUND: Body mass index (BMI) and diabetes are established risk factors for colorectal cancer (CRC), likely through perturbations in metabolic traits (e.g. insulin resistance and glucose homeostasis). Identification of interactions between variation in genes and these metabolic risk factors may identify novel biologic insights into CRC etiology. METHODS: To improve statistical power and interpretation for gene-environment interaction (G × E) testing, we tested genetic variants that regulate expression of a gene together for interaction with BMI (kg/m2 ) and diabetes on CRC risk among 26 017 cases and 20 692 controls. Each variant was weighted based on PrediXcan analysis of gene expression data from colon tissue generated in the Genotype-Tissue Expression Project for all genes with heritability ≥1%. We used a mixed-effects model to jointly measure the G × E interaction in a gene by partitioning the interactions into the predicted gene expression levels (fixed effects), and residual G × E effects (random effects). G × BMI analyses were stratified by sex as BMI-CRC associations differ by sex. We used false discovery rates to account for multiple comparisons and reported all results with FDR <0.2. RESULTS: Among 4839 genes tested, genetically predicted expressions of FOXA1 (P = 3.15 × 10-5 ), PSMC5 (P = 4.51 × 10-4 ) and CD33 (P = 2.71 × 10-4 ) modified the association of BMI on CRC risk for men; KIAA0753 (P = 2.29 × 10-5 ) and SCN1B (P = 2.76 × 10-4 ) modified the association of BMI on CRC risk for women; and PTPN2 modified the association between diabetes and CRC risk in both sexes (P = 2.31 × 10-5 ). CONCLUSIONS: Aggregating G × E interactions and incorporating functional information, we discovered novel genes that may interact with BMI and diabetes on CRC risk.


Subject(s)
Colorectal Neoplasms/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Obesity/epidemiology , ATPases Associated with Diverse Cellular Activities/genetics , Aged , Body Mass Index , Colorectal Neoplasms/genetics , Databases, Genetic , Female , Gene Expression , Genotype , Hepatocyte Nuclear Factor 3-alpha/genetics , Humans , Male , Microtubule-Associated Proteins/genetics , Middle Aged , Phenotype , Proteasome Endopeptidase Complex/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Sex Factors , Sialic Acid Binding Ig-like Lectin 3/genetics , Voltage-Gated Sodium Channel beta-1 Subunit/genetics
19.
Nat Commun ; 11(1): 597, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001714

ABSTRACT

Physical activity has been associated with lower risks of breast and colorectal cancer in epidemiological studies; however, it is unknown if these associations are causal or confounded. In two-sample Mendelian randomisation analyses, using summary genetic data from the UK Biobank and GWA consortia, we found that a one standard deviation increment in average acceleration was associated with lower risks of breast cancer (odds ratio [OR]: 0.51, 95% confidence interval [CI]: 0.27 to 0.98, P-value = 0.04) and colorectal cancer (OR: 0.66, 95% CI: 0.48 to 0.90, P-value = 0.01). We found similar magnitude inverse associations for estrogen positive (ER+ve) breast cancer and for colon cancer. Our results support a potentially causal relationship between higher physical activity levels and lower risks of breast cancer and colorectal cancer. Based on these data, the promotion of physical activity is probably an effective strategy in the primary prevention of these commonly diagnosed cancers.


Subject(s)
Breast Neoplasms/genetics , Colorectal Neoplasms/genetics , Exercise , Genetic Predisposition to Disease , Mendelian Randomization Analysis , Accelerometry , Female , Humans , Odds Ratio , Polymorphism, Single Nucleotide/genetics , Risk Factors
20.
HGG Adv ; 1(1): 100010, 2020 Oct 22.
Article in English | MEDLINE | ID: mdl-35047832

ABSTRACT

Homozygotes for the higher penetrance hemochromatosis risk allele, HFE c.845G>A (p.Cys282Tyr, or C282Y), have been reported to be at a 2- to 3-fold increased risk for colorectal cancer (CRC). These results have been reported for small sample size studies with no information about age at diagnosis for CRC. An association with age at diagnosis might alter CRC screening recommendations. We analyzed two large European ancestry datasets to assess the association of HFE genotype with CRC risk and age at CRC diagnosis. The first dataset included 59,733 CRC or advanced adenoma cases and 72,351 controls from a CRC epidemiological study consortium. The second dataset included 13,564 self-reported CRC cases and 2,880,218 controls from the personal genetics company, 23andMe. No association of the common hereditary hemochromatosis (HH) risk genotype and CRC was found in either dataset. The odds ratios (ORs) for the association of CRC and HFE C282Y homozygosity were 1.08 (95% confidence interval [CI], 0.91-1.29; p = 0.4) and 1.01 (95% CI, 0.78-1.31, p = 0.9) in the two cohorts, respectively. Age at CRC diagnosis also did not differ by HFE C282Y/C282Y genotype in either dataset. These results indicate no increased CRC risk in individuals with HH genotypes and suggest that persons with HH risk genotypes can follow population screening recommendations for CRC.

SELECTION OF CITATIONS
SEARCH DETAIL