Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Enzymol ; 667: 507-534, 2022.
Article in English | MEDLINE | ID: mdl-35525552

ABSTRACT

Budding uninhibited by benzimidazole 1-related protein 1 (BUBR1) is a mitotic checkpoint (better known as the spindle assembly checkpoint) protein that forms part of an inhibitory complex required to delay mitosis when errors occur in the attachment between chromosomes and the mitotic spindle. If these errors remain uncorrected, it could result in unequal distribution of genetic material to each of the nascent daughter cells, leading to potentially disastrous consequences at both the cellular and organismal level. In some higher eukaryotes including vertebrates, BUBR1 has a C-terminal kinase fold that is largely thought to be inactive, whereas in many species this domain has been lost through evolution and the truncated protein is known as mitotic arrest deficient 3 (MAD3). Here we present advice and practical considerations for the design of experiments, their analysis and interpretation to study the functions of the vertebrate BUBR1 during mitosis with emphasis on analysis implicating the pseudokinase domain.


Subject(s)
Kinetochores , M Phase Cell Cycle Checkpoints , Animals , Cell Cycle Proteins/metabolism , HeLa Cells , Humans , Kinetochores/chemistry , Kinetochores/metabolism , Mitosis , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Spindle Apparatus/chemistry , Spindle Apparatus/genetics , Spindle Apparatus/metabolism
2.
Nat Commun ; 12(1): 4841, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404770

ABSTRACT

RAS proteins are GTPases that lie upstream of a signaling network impacting cell fate determination. How cells integrate RAS activity to balance proliferation and cellular senescence is still incompletely characterized. Here, we identify ZNF768 as a phosphoprotein destabilized upon RAS activation. We report that ZNF768 depletion impairs proliferation and induces senescence by modulating the expression of key cell cycle effectors and established p53 targets. ZNF768 levels decrease in response to replicative-, stress- and oncogene-induced senescence. Interestingly, ZNF768 overexpression contributes to bypass RAS-induced senescence by repressing the p53 pathway. Furthermore, we show that ZNF768 interacts with and represses p53 phosphorylation and activity. Cancer genomics and immunohistochemical analyses reveal that ZNF768 is often amplified and/or overexpressed in tumors, suggesting that cells could use ZNF768 to bypass senescence, sustain proliferation and promote malignant transformation. Thus, we identify ZNF768 as a protein linking oncogenic signaling to the control of cell fate decision and proliferation.


Subject(s)
Cellular Senescence/genetics , Genes, ras/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Carcinogenesis , Cell Cycle , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic , DNA Replication , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Genomics , HeLa Cells , Humans , Oncogenes , Phenotype , Phosphoproteins , Phosphorylation , Repression, Psychology , Signal Transduction , ras Proteins/genetics
3.
Mol Biol Cell ; 32(9): 880-891, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33085580

ABSTRACT

Accurate chromosome alignment at metaphase facilitates the equal segregation of sister chromatids to each of the nascent daughter cells. Lack of proper metaphase alignment is an indicator of defective chromosome congression and aberrant kinetochore-microtubule attachments which in turn promotes chromosome missegregation and aneuploidy, hallmarks of cancer. Tools to sensitively, accurately, and quantitatively measure chromosome alignment at metaphase will facilitate understanding of the contribution of chromosome segregation errors to the development of aneuploidy. In this work, we have developed and validated a method based on analytical geometry to measure several indicators of chromosome misalignment. We generated semiautomated and flexible ImageJ2/Fiji pipelines to quantify kinetochore misalignment at metaphase plates as well as lagging chromosomes at anaphase. These tools will ultimately allow sensitive and systematic quantitation of these chromosome segregation defects in cells undergoing mitosis.


Subject(s)
Chromosome Segregation/physiology , Image Processing, Computer-Assisted/methods , Metaphase/physiology , Chromatids , HeLa Cells , Humans , Kinetochores/physiology , Microscopy, Fluorescence/methods , Microtubules/physiology , Mitosis/physiology , Models, Theoretical , Spindle Apparatus
4.
Cell Rep ; 33(7): 108397, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33207204

ABSTRACT

The balance of phospho-signaling at the outer kinetochore is critical for forming accurate attachments between kinetochores and the mitotic spindle and timely exit from mitosis. A major player in determining this balance is the PP2A-B56 phosphatase, which is recruited to the kinase attachment regulatory domain (KARD) of budding uninhibited by benzimidazole 1-related 1 (BUBR1) in a phospho-dependent manner. This unleashes a rapid, switch-like phosphatase relay that reverses mitotic phosphorylation at the kinetochore, extinguishing the checkpoint and promoting anaphase. Here, we demonstrate that the C-terminal pseudokinase domain of human BUBR1 is required to promote KARD phosphorylation. Mutation or removal of the pseudokinase domain results in decreased PP2A-B56 recruitment to the outer kinetochore attenuated checkpoint silencing and errors in chromosome alignment as a result of imbalance in Aurora B activity. Our data, therefore, elucidate a function for the BUBR1 pseudokinase domain in ensuring accurate and timely exit from mitosis.


Subject(s)
M Phase Cell Cycle Checkpoints/physiology , Protein Phosphatase 2/metabolism , Protein Serine-Threonine Kinases/metabolism , Cell Cycle Checkpoints/physiology , Cell Cycle Proteins/metabolism , Chromosomes/metabolism , HeLa Cells , Humans , Kinetochores/metabolism , M Phase Cell Cycle Checkpoints/genetics , Mitosis , Phosphorylation , Protein Binding , Protein Domains/genetics , Protein Serine-Threonine Kinases/genetics , Spindle Apparatus/metabolism
5.
Curr Biol ; 28(6): 872-883.e5, 2018 03 19.
Article in English | MEDLINE | ID: mdl-29502948

ABSTRACT

Monopolar spindle 1 (Mps1) is a conserved apical kinase in the spindle assembly checkpoint (SAC) that ensures accurate segregation of chromosomes during mitosis. Mps1 undergoes extensive auto- and transphosphorylation, but the regulatory and functional consequences of these modifications remain unclear. Recent findings highlight the importance of intermolecular interactions between the N-terminal extension (NTE) of Mps1 and the Hec1 subunit of the NDC80 complex, which control Mps1 localization at kinetochores and activation of the SAC. Whether the NTE regulates other mitotic functions of Mps1 remains unknown. Here, we report that phosphorylation within the NTE contributes to Mps1 activation through relief of catalytic autoinhibition that is mediated by the NTE itself. Moreover, we find that this regulatory NTE function is independent of its role in Mps1 kinetochore recruitment. We demonstrate that the NTE autoinhibitory mechanism impinges most strongly on Mps1-dependent SAC functions and propose that Mps1 activation likely occurs sequentially through dimerization of a "prone-to-autophosphorylate" Mps1 conformer followed by autophosphorylation of the NTE prior to maximal kinase activation segment trans-autophosphorylation. Our observations underline the importance of autoregulated Mps1 activity in generation and maintenance of a robust SAC in human cells.


Subject(s)
Cell Cycle Proteins/metabolism , M Phase Cell Cycle Checkpoints/physiology , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Cell Cycle Proteins/physiology , Cytoskeletal Proteins , HEK293 Cells , HeLa Cells , Humans , Kinetochores/physiology , Mitosis , Nuclear Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/physiology , Protein-Tyrosine Kinases/physiology , Spindle Apparatus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...