Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(23): 14791-14840, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38814908

ABSTRACT

We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.

2.
Science ; 384(6697): 776-781, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753798

ABSTRACT

Sophisticated statistical mechanics approaches and human intuition have demonstrated the possibility of self-assembling complex lattices or finite-size constructs. However, attempts so far have mostly only been successful in silico and often fail in experiment because of unpredicted traps associated with kinetic slowing down (gelation, glass transition) and competing ordered structures. Theoretical predictions also face the difficulty of encoding the desired interparticle interaction potential with the experimentally available nano- and micrometer-sized particles. To overcome these issues, we combine SAT assembly (a patchy-particle interaction design algorithm based on constrained optimization) with coarse-grained simulations of DNA nanotechnology to experimentally realize trap-free self-assembly pathways. We use this approach to assemble a pyrochlore three-dimensional lattice, coveted for its promise in the construction of optical metamaterials, and characterize it with small-angle x-ray scattering and scanning electron microscopy visualization.

3.
Sci Adv ; 10(2): eadl0604, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38198553

ABSTRACT

Controlling the three-dimensional (3D) nanoarchitecture of inorganic materials is imperative for enabling their novel mechanical, optical, and electronic properties. Here, by exploiting DNA-programmable assembly, we establish a general approach for realizing designed 3D ordered inorganic frameworks. Through inorganic templating of DNA frameworks by liquid- and vapor-phase infiltrations, we demonstrate successful nanofabrication of diverse classes of inorganic frameworks from metal, metal oxide and semiconductor materials, as well as their combinations, including zinc, aluminum, copper, molybdenum, tungsten, indium, tin, and platinum, and composites such as aluminum-doped zinc oxide, indium tin oxide, and platinum/aluminum-doped zinc oxide. The open 3D frameworks have features on the order of nanometers with architecture prescribed by the DNA frames and self-assembled lattice. Structural and spectroscopic studies reveal the composition and organization of diverse inorganic frameworks, as well as the optoelectronic properties of selected materials. The work paves the road toward establishing a 3D nanoscale lithography.

4.
Virology ; 592: 109988, 2024 04.
Article in English | MEDLINE | ID: mdl-38244322

ABSTRACT

Infection by SARS-CoV-2 is dependent on binding of the viral spike protein to angiotensin converting enzyme 2 (ACE2), a membrane glycoprotein expressed on epithelial cells in the human upper respiratory tract. Recombinant ACE2 protein has potential application for anti-viral therapy. Here we co-transfected mouse fibroblasts (A9 cells) with a cloned fragment of human genomic DNA containing the intact ACE2 gene and an unlinked neomycin phosphotransferase gene, and then selected stable neomycin-resistant transfectants. Transfectant clones expressed ACE2 protein at levels that were generally proportional to the number of ACE2 gene copies integrated in the cell genome, ranging up to approximately 50 times the level of ACE2 present of Vero-E6 cells. Cells overexpressing ACE2 were hypersensitive to infection by spike-pseudotyped vesicular stomatitis virus (VSV-S), and adsorption of VSV-S to these cells occurred at an accelerated rate compared to Vero-E6 cells. The transfectant cell clones described here therefore have favorable attributes as feedstocks for large-scale production of recombinant human ACE2 protein.


Subject(s)
Angiotensin-Converting Enzyme 2 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Chlorocebus aethiops , Fibroblasts/metabolism , Membrane Glycoproteins/genetics , Protein Binding , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
6.
Proc Natl Acad Sci U S A ; 120(52): e2302037120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38109548

ABSTRACT

Self-assembly of isotropically interacting particles into desired crystal structures could allow for creating designed functional materials via simple synthetic means. However, the ability to use isotropic particles to assemble different crystal types remains challenging, especially for generating low-coordinated crystal structures. Here, we demonstrate that isotropic pairwise interparticle interactions can be rationally tuned through the design of DNA shells in a range that allows transition from common, high-coordinated FCC-CuAu and BCC-CsCl lattices, to more exotic symmetries for spherical particles such as the SC-NaCl lattice and to low-coordinated crystal structures (i.e., cubic diamond, open honeycomb). The combination of computational and experimental approaches reveals such a design strategy using DNA-functionalized nanoparticles and successfully demonstrates the realization of BCC-CsCl, SC-NaCl, and a weakly ordered cubic diamond phase. The study reveals the phase behavior of isotropic nanoparticles for DNA-shell tunable interaction, which, due to the ease of synthesis is promising for the practical realization of non-close-packed lattices.


Subject(s)
Nanoparticles , Sodium Chloride , Nanoparticles/chemistry , DNA/chemistry , Diamond
7.
Nat Commun ; 14(1): 8340, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097573

ABSTRACT

Drug nanoaggregates are particles that can deleteriously cause false positive results during drug screening efforts, but alternatively, they may be used to improve pharmacokinetics when developed for drug delivery purposes. The structural features of molecules that drive nanoaggregate formation remain elusive, however, and the prediction of intracellular aggregation and rational design of nanoaggregate-based carriers are still challenging. We investigate nanoaggregate self-assembly mechanisms using small molecule fragments to identify the critical molecular forces that contribute to self-assembly. We find that aromatic groups and hydrogen bond acceptors/donors are essential for nanoaggregate formation, suggesting that both π-π stacking and hydrogen bonding are drivers of nanoaggregation. We apply structure-assembly-relationship analysis to the drug sorafenib and discover that nanoaggregate formation can be predicted entirely using drug fragment substructures. We also find that drug nanoaggregates are stabilized in an amorphous core-shell structure. These findings demonstrate that rational design can address intracellular aggregation and pharmacologic/delivery challenges in conventional and fragment-based drug development processes.


Subject(s)
Molecular Dynamics Simulation , Pharmaceutical Preparations
8.
J Chem Phys ; 159(15)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37862110

ABSTRACT

Bond-orientational order in DNA-assembled nanoparticles lattices is explored with the help of recently introduced Symmetry-specific Bond Order Parameters (SymBOPs). This approach provides a more sensitive analysis of local order than traditional scalar BOPs, facilitating the identification of coherent domains at the single bond level. The present study expands the method initially developed for assemblies of anisotropic particles to the isotropic ones or cases where particle orientation information is unavailable. The SymBOP analysis was applied to experiments on DNA-frame-based assembly of nanoparticle lattices. It proved highly sensitive in identifying coherent crystalline domains with different orientations, as well as detecting topological defects, such as dislocations. Furthermore, the analysis distinguishes individual sublattices within a single crystalline domain, such as pair of interpenetrating FCC lattices within a cubic diamond. The results underscore the versatility and robustness of SymBOPs in characterizing ordering phenomena, making them valuable tools for investigating structural properties in various systems.


Subject(s)
DNA , Nanoparticles , DNA/chemistry , Nanoparticles/chemistry , Anisotropy
9.
J Am Chem Soc ; 145(36): 19578-19587, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37651692

ABSTRACT

Recent studies have demonstrated novel strategies for the organization of nanomaterials into three-dimensional (3D) ordered arrays with prescribed lattice symmetries using DNA-based self-assembly strategies. In one approach, the nanomaterial is sequestered into DNA origami frames or "material voxels" and then coordinated into ordered arrays based on the voxel geometry and the corresponding directional interactions based on its valency. While the lattice symmetry is defined by the valency of the bonds, a larger-scale morphological development is affected by assembly processes and differences in energies of anisotropic bonds. To facilely model this assembly process, we investigate the self-assembly behavior of hard particles with six interacting vertices via theory and Monte Carlo simulations and exploration of corresponding experimental systems. We demonstrate that assemblies with different 3D crystalline morphologies but the same lattice symmetry can be formed depending on the relative strength of vertex-to-vertex interactions in orthogonal directions. We observed three distinct assembly morphologies for such systems: cube-like, sheet-like, and cylinder-like. A simple analytical theory inspired by well-established ideas in the areas of protein crystallization, based on calculating the second virial coefficient of patchy hard spheres, captures the simulation results and thus represents a straightforward means of modeling this self-assembly process. To complement the theory and simulations, experimental studies were performed to investigate the assembly of octahedral DNA origami frames with varying binding energies at their vertices. X-ray scattering confirms the robustness of the formed nanoscale lattices for different binding energies, while both optical and electron microscopy imaging validated the theoretical predictions on the dependence of the distinct morphologies of assembled state on the interaction strengths in the three orthogonal directions.


Subject(s)
DNA , Anisotropy , Computer Simulation , Crystallization , Monte Carlo Method
10.
ACS Nano ; 17(15): 15012-15024, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37459253

ABSTRACT

Colloidal clusters and gels are ubiquitous in science and technology. Particle softness has a strong effect on interparticle interactions; however, our understanding of the role of this factor in the formation of colloidal clusters and gels is only beginning to evolve. Here, we report the results of experimental and simulation studies of the impact of particle softness on the assembly of clusters and networks from mixtures of oppositely charged polymer nanoparticles (NPs). Experiments were performed below or above the polymer glass transition temperature, at which the interaction potential and adhesive forces between the NPs were significantly varied. Hard NPs assembled in fractal clusters that subsequently organized in a kinetically arrested colloidal gel, while soft NPs formed dense precipitating aggregates, due to the NP deformation and the decreased interparticle distance. Importantly, interactions of hard and soft NPs led to the formation of discrete precipitating NP aggregates at a relatively low volume fraction of soft NPs. A phenomenological model was developed for interactions of oppositely charged NPs with varying softnesses. The experimental results were in agreement with molecular dynamics simulations based on the model. This work provides insight on interparticle interactions before, during, and after the formation of hard-hard, hard-soft, and soft-soft contacts and has impact for numerous applications of reversible colloidal gels, including their use as inks for additive manufacturing.

11.
Nanoscale ; 14(31): 11139-11151, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35771156

ABSTRACT

Directional assembly of nanoscale objects results in morphologies that can broadly be classified as supra-molecular nanopolymers. Such morphologies, given a functional choice of the monomers used as building blocks, can be of ubiquitous utility in optical, magnetic, rheological, and medical applications. These applications, however, require a profound understanding of the interplay between monomer shape and bonding on one side, and polymeric properties - on the other. Recently, we fabricated nanopolymers using cuboid DNA nanochambers, as they not only allow fine-tuning of the resulting morphologies but can also carry magnetic nanoparticles. However, it is not known if the cuboid shape and inter-cuboid connectivity restrict the equilibrium confirmations of the resulting nanopolymers, making them less responsive to external stimuli. In this work, using Molecular Dynamics simulations, we perform an extensive comparison between various nanopolymer architectures to explore their polymeric properties, and their response to an applied magnetic field if magnetic nanoparticles are embedded. We explain the impact of monomer shape and bonding on the mechanical and magnetic properties and show that DNA nanochambers can build highly responsive and magnetically controllable nanopolymers.

12.
ACS Nano ; 16(7): 10383-10391, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35549238

ABSTRACT

Colocalization of cascade enzymes is broadly discussed as a phenomenon that can boost the cascade reaction throughput, although a direct experimental verification is often challenging. This is mainly due to difficulties in establishing proper size regimes and in the analytical quantification of colocalization effect with adequate experimental systems and simulations. In this study, by taking advantage of reversible DNA-directed colocalization of enzymes on microspheres, we established a cascade system that can be used to directly evaluate the colocalization effect with exactly the same experimental settings except for the state of enzyme dispersion. In the regime of highly dilute microspheres of particular sizes, the colocalized cascade shows enhanced activity compared with the freely diffusing cascade, as evidenced by a shortened lag phase in the time-course production. Reaction-diffusion modeling reveals that the enhancement can be ascribed to the initial accumulation of intermediate substrate around the colocalized enzymes and is found to be carrier-size-dependent. This work demonstrates the dependence of the colocalization effect of enzyme cascades on an interplay of nano- and microscales, lending theoretical support to the rational design of highly efficient multienzyme catalysts.


Subject(s)
DNA , Enzymes , Kinetics , Diffusion , Catalysis , Enzymes/metabolism
13.
Nano Lett ; 22(9): 3809-3817, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35468287

ABSTRACT

Self-assembly processes, while promising for enabling the fabrication of complexly organized nanomaterials from nanoparticles, are often limited in creating structures with multiscale order. These limitations are due to difficulties in practically realizing the assembly processes required to achieve such complex organizations. For a long time, a hierarchical assembly attracted interest as a potentially powerful approach. However, due to the experimental limitations, intermediate-level structures are often heterogeneous in composition and structure, which significantly impacts the formation of large-scale organizations. Here, we introduce a two-stage assembly strategy: DNA origami frames scaffold a coordination of nanoparticles into designed 3D nanoclusters, and then these clusters are assembled into ordered lattices whose types are determined by the clusters' valence. Through modulating the nanocluster architectures and intercluster bindings, we demonstrate the successful formation of complexly organized nanoparticle crystals. The presented two-stage assembly method provides a powerful fabrication strategy for creating nanoparticle superlattices with prescribed unit cells.


Subject(s)
Nanoparticles , Nanostructures , DNA/chemistry , Nanoparticles/chemistry , Nanostructures/chemistry , Nanotechnology
14.
J Am Chem Soc ; 144(18): 8138-8152, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35452210

ABSTRACT

Controlling the interfaces and interactions of colloidal nanoparticles (NPs) via tethered molecular moieties is crucial for NP applications in engineered nanomaterials, optics, catalysis, and nanomedicine. Despite a broad range of molecular types explored, there is a need for a flexible approach to rationally vary the chemistry and structure of these interfacial molecules for controlling NP stability in diverse environments, while maintaining a small size of the NP molecular shell. Here, we demonstrate that low-molecular-weight, bifunctional comb-shaped, and sequence-defined peptoids can effectively stabilize gold NPs (AuNPs). The generality of this robust functionalization strategy was also demonstrated by coating of silver, platinum, and iron oxide NPs with designed peptoids. Each peptoid (PE) is designed with varied arrangements of a multivalent AuNP-binding domain and a solvation domain consisting of oligo-ethylene glycol (EG) branches. Among designs, a peptoid (PE5) with a diblock structure is demonstrated to provide a superior nanocolloidal stability in diverse aqueous solutions while forming a compact shell (∼1.5 nm) on the AuNP surface. We demonstrate by experiments and molecular dynamics simulations that PE5-coated AuNPs (PE5/AuNPs) are stable in select organic solvents owing to the strong PE5 (amine)-Au binding and solubility of the oligo-EG motifs. At the vapor-aqueous interface, we show that PE5/AuNPs remain stable and can self-assemble into ordered 2D lattices. The NP films exhibit strong near-field plasmonic coupling when transferred to solid substrates.


Subject(s)
Metal Nanoparticles , Nanostructures , Peptoids , Gold/chemistry , Metal Nanoparticles/chemistry , Molecular Dynamics Simulation , Nanostructures/chemistry , Peptoids/chemistry
15.
Science ; 376(6589): 203-207, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35389786

ABSTRACT

Advances in nanoscale self-assembly have enabled the formation of complex nanoscale architectures. However, the development of self-assembly strategies toward bottom-up nanofabrication is impeded by challenges in revealing these structures volumetrically at the single-component level and with elemental sensitivity. Leveraging advances in nano-focused hard x-rays, DNA-programmable nanoparticle assembly, and nanoscale inorganic templating, we demonstrate nondestructive three-dimensional imaging of complexly organized nanoparticles and multimaterial frameworks. In a three-dimensional lattice with a size of 2 micrometers, we determined the positions of about 10,000 individual nanoparticles with 7-nanometer resolution, and identified arrangements of assembly motifs and a resulting multimaterial framework with elemental sensitivity. The real-space reconstruction permits direct three-dimensional imaging of lattices, which reveals their imperfections and interfaces and also clarifies the relationship between lattices and assembly motifs.

16.
JACS Au ; 2(2): 357-366, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35252986

ABSTRACT

DNA nanotechnology has increasingly been used as a platform to scaffold enzymes based on its unmatched ability to structure enzymes in a desired format. The capability to organize enzymes has taken many forms from more traditional 2D pairings on individual scaffolds to recent works introducing enzyme organizations in 3D lattices. As the ability to define nanoscale structure has grown, it is critical to fully deconstruct the impact of enzyme organization at the single-scaffold level. Here, we present an open, three-dimensional (3D) DNA wireframe octahedron which is used to create a library of spatially arranged organizations of glucose oxidase and horseradish peroxidase. We explore the contribution of enzyme spacing, arrangement, and location on the 3D scaffold to cascade activity. The experiments provide insight into enzyme scaffold design, including the insignificance of scaffold sequence makeup on activity, an increase in activity at small enzyme spacings of <10 nm, and activity changes that arise from discontinuities in scaffold architecture. Most notably, the experiments allow us to determine that enzyme colocalization itself on the DNA scaffold dominates over any specific enzyme arrangement.

17.
Angew Chem Int Ed Engl ; 61(3): e202105678, 2022 01 17.
Article in English | MEDLINE | ID: mdl-34128306

ABSTRACT

Nanoparticles have long been recognized for their unique properties, leading to exciting potential applications across optics, electronics, magnetism, and catalysis. These specific functions often require a designed organization of particles, which includes the type of order as well as placement and relative orientation of particles of the same or different kinds. DNA nanotechnology offers the ability to introduce highly addressable bonds, tailor particle interactions, and control the geometry of bindings motifs. Here, we discuss how developments in structural DNA nanotechnology have enabled greater control over 1D, 2D, and 3D particle organizations through programmable assembly. This Review focuses on how the use of DNA binding between nanocomponents and DNA structural motifs has progressively allowed the rational formation of prescribed particle organizations. We offer insight into how DNA-based motifs and elements can be further developed to control particle organizations and how particles and DNA can be integrated into nanoscale building blocks, so-called "material voxels", to realize designer nanomaterials with desired functions.

18.
Soft Matter ; 18(3): 526-534, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34908083

ABSTRACT

Polyelectrolyte (PE) chains respond in a complex manner to multivalent salt environments, and this behavior depends on pH, temperature, and the presence of specific counter ions. Although much work has been done to understand the behaviour of free PE chains, it is important to reveal their behaviour on a nanoparticle's surface, where surface constraints, particle geometry, and multi-chain environment can affect their behaviour and contribute to particles' assembly states. Our work investigates, using in situ small-angle X-ray scattering (SAXS), the morphology of PE (single-stranded DNA) chains grafted onto the surface of spherical gold nanoparticles assembled in a lattice in the presence of monovalent, divalent and trivalent salts. For divalent salts, the DNA brush length was found to decrease at a faster rate with salt concentration than in the monovalent salt environment, while trivalent salts led to chain collapse. Using a power law analysis and the modified Daoud-Cotton model, we have obtained insight into the mechanism of a nanoparticle-grafted chain's response to ionic environments. Our analysis suggests that the decrease in brush length is due to the conventional electrostatic screening for monovalent systems, whereas for divalent systems both electrostatic screening and divalent ion bridging must be considered.


Subject(s)
DNA, Single-Stranded , Metal Nanoparticles , Gold , Ions , Scattering, Small Angle , X-Ray Diffraction
19.
Nano Lett ; 21(24): 10547-10554, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34647751

ABSTRACT

Assembly of nanoscale objects into linear architectures resembling molecular polymers is a basic organization resulting from divalent interactions. Such linear architectures occur for particles with two binding patches on opposite sides, known as Janus particles. However, unlike molecular systems where valence bonds can be envisioned as pointlike interactions nanoscale patches are often realized through multiple molecular linkages. The relationship between the characteristics of these linkages, the resulting interpatch connectivity, and assembly morphology is not well-explored. Here, we investigate assembly behavior of model divalent nanomonomers, DNA nanocuboid with tailorable multilinking bonds. Our study reveals that the characteristics of individual molecular linkages and their collective properties have a profound effect on nanomonomer reactivity and resulting morphologies. Beyond linear nanopolymers, a common signature of divalent nanomonomers, we observe an effective valence increase as linkages lengthened, leading to the nanopolymer bundling. The experimental findings are rationalized by molecular dynamics simulations.


Subject(s)
DNA , Polymers , DNA/chemistry , Molecular Dynamics Simulation , Polymers/chemistry
20.
ACS Appl Mater Interfaces ; 13(33): 39030-39041, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34402305

ABSTRACT

Precise control over the assembly of biocompatible three-dimensional (3D) nanostructures would allow for programmed interactions within the cellular environment. Nucleic acids can be used as programmable crosslinkers to direct the assembly of quantum dots (QDs) and tuned to demonstrate different interparticle binding strategies. Morphologies of self-assembled QDs are evaluated via gel electrophoresis, transmission electron microscopy, small-angle X-ray scattering, and dissipative particle dynamics simulations, with all results being in good agreement. The controlled assembly of 3D QD organizations is demonstrated in cells via the colocalized emission of multiple assembled QDs, and their immunorecognition is assessed via enzyme-linked immunosorbent assays. RNA interference inducers are also embedded into the interparticle binding strategy to be released in human cells only upon QD assembly, which is demonstrated by specific gene silencing. The programmability and intracellular activity of QD assemblies offer a strategy for nucleic acids to imbue the structure and therapeutic function into the formation of complex networks of nanostructures, while the photoluminescent properties of the material allow for optical tracking in cells in vitro.


Subject(s)
Cross-Linking Reagents/chemistry , Luminescent Agents/chemistry , Nucleic Acids/chemistry , Quantum Dots/chemistry , Cell Line, Tumor , Cell Membrane Permeability , Cell Survival/drug effects , Cell Tracking , Drug Carriers/chemistry , Gene Silencing/drug effects , Humans , Models, Molecular , Optical Imaging , Structure-Activity Relationship , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...