Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.391
1.
BMC Med Educ ; 24(1): 644, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849847

BACKGROUND: The rapid growth of artificial intelligence (AI) technologies has been driven by the latest advances in computing power. Although, there exists a dearth of research on the application of AI in medical education. METHODS: this study is based on the TAM-ISSM-UTAUT model and introduces STARA awareness and chilling effect as moderating variables. A total of 657 valid questionnaires were collected from students of a medical university in Dalian, China, and data were statistically described using SPSS version 26, Amos 3.0 software was used to validate the research model, as well as moderated effects analysis using Process (3.3.1) software, and Origin (2021) software. RESULTS: The findings reveal that both information quality and perceived usefulness are pivotal factors that positively influence the willingness to use AI products. It also uncovers the moderating influence of the chilling effect and STARA awareness. CONCLUSIONS: This suggests that enhancing information quality can be a key strategy to encourage the widespread use of AI products. Furthermore, this investigation offers valuable insights into the intersection of medical education and AI use from the standpoint of medical students. This research may prove to be pertinent in shaping the promotion of Medical Education Intelligence in the future.


Artificial Intelligence , Education, Medical , Students, Medical , Humans , Students, Medical/psychology , Surveys and Questionnaires , Male , Female , China , Young Adult , Awareness
2.
Nat Commun ; 15(1): 4898, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38851785

Developing artificial leaves to address the environmental burden of CO2 is pivotal for advancing our Net Zero Future. In this study, we introduce EcoLeaf, an artificial leaf that closely mimics the characteristics of natural leaves. It harnesses visible light as its sole energy source and orchestrates the controlled expansion and contraction of stomata and the exchange of petiole materials to govern the rate of CO2 sequestration from the atmosphere. Furthermore, EcoLeaf has a cellulose composition and mechanical strength similar to those of natural leaves, allowing it to seamlessly integrate into the ecosystem during use and participate in natural degradation and nutrient cycling processes at the end of its life. We propose that the carbon sequestration pathway within EcoLeaf is adaptable and can serve as a versatile biomimetic platform for diverse biogenic carbon sequestration pathways in the future.


Carbon Dioxide , Carbon Sequestration , Cellulose , Plant Leaves , Carbon Dioxide/metabolism , Carbon Dioxide/chemistry , Plant Leaves/metabolism , Cellulose/metabolism , Cellulose/chemistry , Ecosystem , Plant Stomata/metabolism , Photosynthesis , Light
3.
Langmuir ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38829289

In this study, dopamine-modified graphene aerogel (DGA) is synthesized through a one-step hydrothermal method using graphene oxide as the precursor and dopamine as the reducing agent. Subsequently, in situ immersion synthesis is conducted to obtain ZIF-8 loaded on a dopamine-modified graphene aerogel skeleton (ZDGA), featuring a regular honeycomb interconnected mesoporosity and a high specific surface area of 532.8 m2/g. The synthesized ZDGA exhibited exceptional adsorption performance for the cationic dye malachite green. At room temperature, ZDGA achieved an impressive equilibrium adsorption capacity of 6578.34 mg/g. The adsorption process followed pseudo-secondary kinetics and adhered to the Langmuir model, indicating chemically dominated adsorption on a monomolecular layer. Intraparticle diffusion was the primary rate determinant, with π-π stacking, electrostatic adsorption, hydrogen bonding, and Lewis acid-base interactions serving as the key driving forces. It has an ideal specific surface area and good cycling performance, which highlights its potential application in dye wastewater treatment.

4.
BMC Oral Health ; 24(1): 646, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824565

BACKGROUND: Immature teeth with necrotic pulps present multiple challenges to clinicians. In such cases, regenerative endodontic procedures (REPs) may be a favorable strategy. Cells, biomaterial scaffolds, and signaling molecules are three key elements of REPs. Autologous human dental pulp cells (hDPCs) play an important role in pulp regeneration. In addition, autologous platelet concentrates (APCs) have recently been demonstrated as effective biomaterial scaffolds in regenerative dentistry, whereas the latest generation of APCs-concentrated growth factor (CGF), especially liquid phase CGF (LPCGF)-has rarely been reported in REPs. CASE PRESENTATION: A 31-year-old woman presented to our clinic with the chief complaint of occlusion discomfort in the left mandibular posterior region for the past 5 years. Tooth #35 showed no pulp vitality and had a periodontal lesion, and radiographic examination revealed that the tooth exhibited extensive periapical radiolucency with an immature apex and thin dentin walls. REP was implemented via transplantation of autologous hDPCs with the aid of LPCGF. The periodontal lesion was managed with simultaneous periodontal surgery. After the treatment, the tooth was free of any clinical symptoms and showed positive results in thermal and electric pulp tests at 6- and 12-month follow-ups. At 12-month follow-up, radiographic evidence and three-dimensional models, which were reconstructed using Mimics software based on cone-beam computed tomography, synergistically confirmed bone augmentation and continued root development, indicating complete disappearance of the periapical radiolucency, slight lengthening of the root, evident thickening of the canal walls, and closure of the apex. CONCLUSION: hDPCs combined with LPCGF represents an innovative and effective strategy for cell-based regenerative endodontics.


Dental Pulp , Regenerative Endodontics , Humans , Female , Adult , Dental Pulp/cytology , Regenerative Endodontics/methods , Dental Pulp Necrosis/therapy , Cell Transplantation/methods , Transplantation, Autologous
5.
Neuroscience ; 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38848776

N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) are brain metabolites involved in some key neuronal functions within the brain, such as cognitive function. The aim of this study was to investigate whether parkinson's disease (PD) with different cognitive status induces regional brain metabolite differences. 38 diagnosed PD patients, including 18 PD patients with normal cognitive (PDN), 20 PD subjects with cognitive impairment (PDMCI) and 25 healthy controls (HC) participated in this study. All subjects underwent a single-voxel proton MR spectroscopy (1H-MRS) on a 3T scanner. 1H-MRS were obtained from bilateral PCC, left thalamus and PFC regions in all subjects, respectively. Region-specific cerebral metabolic alterations existed in PD patients with different cognitive status. PDMCI patients showed a significant reduction of NAA, Cho and tCr in the PCC and left thalamus, compared to healthy controls; whereas lower levels of NAA and Cho in thalamus were found in PDN patients. Moreover, Cho and tCr levels were positively correlated with MMSE scores. Both NAA and tCr in PCC levels were positively correlated with MMSE and MoCA scores. The combination of thalamic and PCC metabolites showed a 75.6% accuracy in distinguishing PDMCI patients from PDN patients. This study provides preliminary evidence that thalamic, PCC and PFC neurometabolic alterations occur in PD patients with cognition decline. . Findings of this study indicate that NAA and tCr abnormalities in PCC and thalamus might be used as a biomarker to track cognitive decline in Parkinson's disease in clinical settings.

6.
Front Med (Lausanne) ; 11: 1401443, 2024.
Article En | MEDLINE | ID: mdl-38841577

Objective: With a rapidly aging global population, the assessment of mortality risk following hip fracture in older adults has received increasing attention. Recently, the system inflammation response index (SIRI) has been identified as a novel prognostic marker to reflect both systemic inflammation and immune status. However, it is not yet known whether SIRI is a potential predictor of subsequent death in hip fracture patients. Therefore, this study aimed to investigate the association between SIRI and mortality in older patients with hip fracture. Methods: A total of 1,206 older hip fracture patients undergoing surgery between January 2013 and December 2022 were consecutively derived from our longitudinal database. Patients were divided into three groups according to SIRI tertiles, calculated as neutrophil × monocyte / lymphocyte. Survival status was obtained from medical records or telephone interviews, and the study outcome was all-cause mortality after hip fracture at the longest follow-up. Multivariate Cox proportional hazard model and restricted cubic spline (RCS) regression model were used to evaluate the association between SIRI and mortality. Moreover, a series of sensitivity analyses were conducted to further validate the robustness of the association. Results: During a median follow-up of 43.85 months, 337 patients (27.94%) died. After full adjustment, each unit increase in SIRI was significantly associated with a 2.2% increase in overall mortality (95% confidence interval [CI]: 1.001-1.042, p = 0.029). Similarly, compared with the first tertile of SIRI, the second and third tertile showed a 1.335-fold (95% CI: 1.011-1.762, p = 0.042) and 1.447-fold (95% CI, 1.093-1.917, p = 0.010) higher risk of death. Sensitivity analyses confirmed the stability of the association. Moreover, RCS analysis revealed a positive non-linear relationship between SIRI and mortality (P for nonlinearity = 0.021). Conclusion: High SIRI level at admission was significantly and positively associated with an increased risk of death, suggesting that SIRI may be an independent predictor of mortality in older patients with hip fracture.

7.
Light Sci Appl ; 13(1): 111, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734686

Quantum-confined CsPbBr3 perovskites are promising blue emitters for ultra-high-definition displays, but their soft lattice caused by highly ionic nature has a limited stability. Here, we endow CsPbBr3 nanoplatelets (NPLs) with atomic crystal-like structural rigidity through proper surface engineering, by using strongly bound N-dodecylbenzene sulfonic acid (DBSA). A stable, rigid crystal structure, as well as uniform, orderly-arranged surface of these NPLs is achieved by optimizing intermediate reaction stage, by switching from molecular clusters to mono-octahedra, while interaction with DBSA resulted in formation of a CsxO monolayer shell capping the NPL surface. As a result, both structural and optical stability of the CsPbBr3 NPLs is enhanced by strong covalent bonding of DBSA, which inhibits undesired phase transitions and decomposition of the perovskite phase potentially caused by ligand desorption. Moreover, rather small amount of DBSA ligands at the NPL surface results in a short inter-NPL spacing in their closely-packed films, which facilitates efficient charge injection and transport. Blue photoluminescence of the produced CsPbBr3 NPLs is bright (nearly unity emission quantum yield) and peaks at 457 nm with an extremely narrow bandwidth of 3.7 nm at 80 K, while the bandwidth of the electroluminescence (peaked at 460 nm) also reaches a record-narrow value of 15 nm at room temperature. This value corresponds to the CIE coordinates of (0.141, 0.062), which meets Rec. 2020 standards for ultra-high-definition displays.

8.
Light Sci Appl ; 13(1): 101, 2024 May 06.
Article En | MEDLINE | ID: mdl-38705921

Temporal solitons have been the focus of much research due to their fascinating physical properties. These solitons can form bound states, which are fundamentally crucial modes in fiber laser and present striking analogies with their matter molecules counterparts, which means they have potential applications in large-capacity transmission and all-optical information storage. Although traditionally, second-order dispersion has been the dominant dispersion for conventional solitons, recent experimental and theoretical research has shown that pure-high-even-order dispersion (PHEOD) solitons with energy-width scaling can arise from the interaction of arbitrary negative-even-order dispersion and Kerr nonlinearity. Despite these advancements, research on the bound states of PHEOD solitons is currently non-existent. In this study, we obtained PHEOD bound solitons in a fiber laser using an intra-cavity spectral pulse shaper for high-order dispersion management. Specifically, we experimentally demonstrate the existence of PHEOD solitons and PHEOD bound solitons with pure-quartic, -sextic, -octic, and -decic dispersion. Numerical simulations corroborate these experimental observations. Furthermore, vibrating phase PHEOD bound soliton pairs, sliding phase PHEOD bound soliton pairs, and hybrid phase PHEOD bound tri-soliton are discovered and characterized. These results broaden the fundamental understanding of solitons and show the universality of multi-soliton patterns.

9.
Adv Sci (Weinh) ; : e2400969, 2024 May 22.
Article En | MEDLINE | ID: mdl-38774947

Novel active DNA transposons, such as Spy transposons from the PHIS superfamily, are identified through bioinformatics in this study. The native transposases cgSpy and cvSpy displayed transposition activities of approximately 85% and 35% compared to the hyperactive piggyBac transposase (hyPB). The cgSpy transposon showed unique characteristics, including a lack of overproduction inhibition and reduced efficiency for insertion sizes between 3.1 to 8.5 kb. Integration preferences of cgSpy are found in genes and regulatory regions, making it suitable for genetic manipulation. Evaluation in T-cell engineering demonstrated that cgSpy-mediated chimeric antigen receptor (CAR) modification is comparable to the PB system, indicating its potential utility in cell therapy. This study unveils the promising application of the active native transposase, Spy, from Colletes gigas, as a valuable tool for genetic engineering, particularly in T-cell manipulation.

10.
Biosensors (Basel) ; 14(5)2024 May 07.
Article En | MEDLINE | ID: mdl-38785705

The development of rapid detection tools for viruses is vital for the prevention of pandemics and biothreats. Aptamers that target inactivated viruses are attractive for sensors due to their improved biosafety. Here, we evaluated a DNA aptamer (named as 6.9) that specifically binds to the inactivated SARS-CoV-2 virus with a low dissociation constant (KD = 9.6 nM) for the first time. Based on aptamer 6.9, we developed a fiber-optic evanescent wave (FOEW) biosensor. Inactivated SARS-CoV-2 and the Cy5.5-tagged short complementary strand competitively bound with the aptamer immobilized on the surface of the sensor. The detection of the inactivated SARS-CoV-2 virus was realized within six minutes with a limit of detection (LOD, S/N = 3) of 740 fg/mL. We also developed an electrochemical impedance aptasensor which exhibited an LOD of 5.1 fg/mL and high specificity. We further demonstrated that the LODs of the FOEW and electrochemical impedance aptasensors were, respectively, more than 1000 and 100,000 times lower than those of commercial colloidal gold test strips. We foresee that the facile aptamer isolation process and sensor design can be easily extended for the detection of other inactivated viruses.


Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Dielectric Spectroscopy , Limit of Detection , SARS-CoV-2 , SARS-CoV-2/isolation & purification , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19/virology , Humans , Fiber Optic Technology
11.
Animals (Basel) ; 14(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38791643

This study aimed to investigate the evolutionary profile (including diversity, activity, and abundance) of retrotransposons (RTNs) with long terminal repeats (LTRs) in ten species of Tetraodontiformes. These species, Arothron firmamentum, Lagocephalus sceleratus, Pao palembangensis, Takifugu bimaculatus, Takifugu flavidus, Takifugu ocellatus, Takifugu rubripes, Tetraodon nigroviridis, Mola mola, and Thamnaconus septentrionalis, are known for having the smallest genomes among vertebrates. Data mining revealed a high diversity and wide distribution of LTR retrotransposons (LTR-RTNs) in these compact vertebrate genomes, with varying abundances among species. A total of 819 full-length LTR-RTN sequences were identified across these genomes, categorized into nine families belonging to four different superfamilies: ERV (Orthoretrovirinae and Epsilon retrovirus), Copia, BEL-PAO, and Gypsy (Gmr, Mag, V-clade, CsRN1, and Barthez). The Gypsy superfamily exhibited the highest diversity. LTR family distribution varied among species, with Takifugu bimaculatus, Takifugu flavidus, Takifugu ocellatus, and Takifugu rubripes having the highest richness of LTR families and sequences. Additionally, evidence of recent invasions was observed in specific tetraodontiform genomes, suggesting potential transposition activity. This study provides insights into the evolution of LTR retrotransposons in Tetraodontiformes, enhancing our understanding of their impact on the structure and evolution of host genomes.

12.
Neuroreport ; 35(10): 601-611, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38813902

Danshen injection (DI) is effective in treating cardiovascular and cerebrovascular diseases, including ischemic stroke (IS), including IS, but its mechanism is unclear. A middle cerebral artery occlusion model was used to simulate ischemia/reperfusion (I/R) injury in SD rats. Overexpression of hypoxia-inducible factor 1α (HIF-1α) was achieved by AAV-HIF-1α. Rats were treated with DI or saline. Neurological scores and infarction rates were assessed. I/R damage was examined by HE, 2,3,5-triphenyltetrazolium and Nissl stainings. Expression levels of relative proteins [TNF-α, IL-6, IL-1ß, SOD, MDA, ROS, HIF-1α, CXC chemokine receptor 4 (CXCR4) and NF-κB] were measured. DI treatment improved neurological scores and reduced infarction rates, suggesting that it inhibits inflammation and oxidative stress. The expression levels of HIF-1α, CXCR4 and NF-κB were decreased. However, the effectiveness of DI on inflammation inhibition was lost after HIF-1α overexpression. DI may directly target HIF-1α to suppress neuroinflammation and reduce I/R injury by suppressing the HIF-1α/CXCR4/NF-κB signaling pathway.


Hypoxia-Inducible Factor 1, alpha Subunit , NF-kappa B , Neuroinflammatory Diseases , Rats, Sprague-Dawley , Receptors, CXCR4 , Reperfusion Injury , Salvia miltiorrhiza , Signal Transduction , Animals , Receptors, CXCR4/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , NF-kappa B/metabolism , Signal Transduction/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Rats , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/drug therapy
13.
Sci Rep ; 14(1): 10208, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702519

Serial casting as one of the applications to treat early-onset scoliosis has been reported efficiently to improve deformity, but no report has focused on the efficacy of braces in the treatment of congenital early-onset scoliosis and comparison with progressive idiopathic early-onset scoliosis. Patients with progressive EOS treated with braces in our institution with a minimum of 4 years follow-up were reviewed. Two groups according to the etiological diagnosis were analyzed and compared: the congenital scoliosis (CS) group and idiopathic scoliosis (IS) group. The success cases and the failure cases were also compared. 27 patients with an average main Cobb angle of 38.19° (20-55) underwent initial bracing at an average age of 55.7 months (24-108), the average follow-up time was 76.19 months (49-117). In IS group the main Cobb angle was corrected to 18.69 ± 12.06° (48.61%) following the first bracing; the final Cobb angle was 23.08 ± 22.15°(38.76%) after brace removal. In CS group the main Cobb angle was corrected to 33.93 ± 10.31°(17.1%) following the first bracing and 37.93 ± 14.74°(3.53%) after brace removal. Both coronal chest width and T1-T12 height increased dramatically from pre-bracing to the last follow-up. Patients diagnosed as IS tended to have a better result in main Cobb angle correction than that of CS (P = 0.049). By the time of last follow-up, 8 patients had undergone surgery, and the operation time was postponed by 68.88 ± 26.43 months. For patients with progressive early-onset scoliosis, bracing is an efficient nonsurgical alternative to casting, and some of them can be cured; if not, eventual surgical intervention can be delayed for a period of time without restrictions on the thoracic cavity.


Braces , Scoliosis , Humans , Scoliosis/therapy , Female , Male , Child , Child, Preschool , Treatment Outcome , Disease Progression , Age of Onset , Follow-Up Studies , Retrospective Studies
14.
Sci Rep ; 14(1): 12132, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802497

The striatum plays a crucial role in providing input to the basal ganglia circuit and is implicated in the pathological process of Parkinson's disease (PD). Disruption of the dynamic equilibrium in the basal ganglia loop can be attributed to the abnormal functioning of the medium spiny neurons (MSNs) within the striatum, potentially acting as a trigger for PD. Exercise has been shown to mitigate striatal neuronal dysfunction through neuroprotective and neurorestorative effects and to improve behavioral deficits in PD model mice. In addition, this effect is offset by the activation of MSNs expressing dopamine D2 receptors (D2-MSNs). In the current study, we investigated the underlying neurobiological mechanisms of this effect. Our findings indicated that exercise reduces the power spectral density of the beta-band in the striatum and decreases the overall firing frequency of MSNs, particularly in the case of striatal D2-MSNs. These observations were consistent with the results of molecular biology experiments, which revealed that aerobic training specifically enhanced the expression of striatal dopamine D2 receptors (D2R). Taken together, our results suggest that aerobic training aimed at upregulating striatal D2R expression to inhibit the functional activity of D2-MSNs represents a potential therapeutic strategy for the amelioration of motor dysfunction in PD.


Corpus Striatum , Disease Models, Animal , Parkinson Disease , Physical Conditioning, Animal , Receptors, Dopamine D2 , Animals , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/genetics , Corpus Striatum/metabolism , Mice , Parkinson Disease/therapy , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Male , Neurons/metabolism , Mice, Inbred C57BL , Motor Activity/physiology , Medium Spiny Neurons
15.
Dig Liver Dis ; 2024 May 28.
Article En | MEDLINE | ID: mdl-38811246

AIMS: To confirm whether the pathological response of lymph node metastasis (LNM) to neoadjuvant chemotherapy (NCT) can predict the prognosis of patients with gastric cancer (GC). METHODS: A total of 979 patients with locally advanced GC were included. χ2 test was used to analyze the relationship between LNM TRG and clinicopathological factors. Cox proportional hazards model was used to analyze the relationship between LNM TRG, clinicopathological factors, and overall survival (OS). RESULTS: A total of 21,162 lymph nodes were evaluated, with 237 patients (35.4%) in the response group and 433 patients (64.6%) in the non-response group. The non-responsive group was strongly associated with higher ypT, ypN, ypTNM, primary tumor (PT) TRG (all p < 0.001), positive cancer nodules (p = 0.001), and more distant LNM location (p < 0.001). Patients with the same PT TRG but different LNM TRG had different prognosis. There was no difference in OS between the responding and non-responding groups of LNM at location 2, 3, and M. YpN, tumor location, and LNM location were independent prognostic factors. CONCLUSIONS: The combination of LNM TRG and PT TRG could better predict patient prognosis. Lymph node dissection should be routinely performed after NCT to provide the reference of radical resection.

16.
Nat Genet ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38811844

Genome-wide association studies of brain imaging phenotypes are mainly performed in European populations, but other populations are severely under-represented. Here, we conducted Chinese-alone and cross-ancestry genome-wide association studies of 3,414 brain imaging phenotypes in 7,058 Chinese Han and 33,224 white British participants. We identified 38 new associations in Chinese-alone analyses and 486 additional new associations in cross-ancestry meta-analyses at P < 1.46 × 10-11 for discovery and P < 0.05 for replication. We pooled significant autosomal associations identified by single- or cross-ancestry analyses into 6,443 independent associations, which showed uneven distribution in the genome and the phenotype subgroups. We further divided them into 44 associations with different effect sizes and 3,557 associations with similar effect sizes between ancestries. Loci of these associations were shared with 15 brain-related non-imaging traits including cognition and neuropsychiatric disorders. Our results provide a valuable catalog of genetic associations for brain imaging phenotypes in more diverse populations.

17.
Otol Neurotol ; 45(5): 521-528, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38728554

PURPOSE: To evaluate a system for otomicrosurgery based on 4K three-dimensional (3D) exoscope technology and apply it to cochlear implantation. METHODS: An open stereoscopic vision-based surgical system, which differs from traditional surgical microscopes, was created by utilizing 4K stereo imaging technology and combining it with low-latency 4K ultra-high-definition 3D display. The system underwent evaluation based on 57 cochlear implantation operations, three designed microscopic manipulations, and a questionnaire survey. RESULTS: The surgical images displayed by the 4K-3D exoscope system (4K-3D-ES) are stereoscopic, clear, and smooth. The use of 4K-3D-ES in cochlear implantation is not inferior to traditional microscopes in terms of intraoperative bleeding and surgical complications, and the surgical duration is not slower or may even be faster than when using traditional microscopes. The results of micromanipulation experiments conducted on 16 students also confirmed this and demonstrated that 4K-3D-ES can be easily adapted. Furthermore, additional advantages of 4K-3D-ES were gathered. Significantly enlarged and high-definition stereoscopic images contribute to the visualization of finer anatomical microstructures such as chordae tympani, ensuring safer surgery. Users feel more comfortable in their necks, shoulders, waists, and backs. Real-time shared stereoscopic view for multiple people, convenient for collaboration and teaching. The ear endoscope and 4K-3D-ES enable seamless switching on the same screen. High-definition 3D images and videos can be saved with just one click, making future publication and communication convenient. CONCLUSION: The feasibility and safety of 4K-3D-ES for cochlear implantation surgery have been demonstrated. The 4K-3D-ES also offers numerous unique advantages and holds clinical application and promotional value.


Cochlear Implantation , Humans , Cochlear Implantation/methods , Cochlear Implantation/instrumentation , Male , Female , Child , Imaging, Three-Dimensional/methods , Adult , Middle Aged , Microsurgery/methods , Microsurgery/instrumentation , Child, Preschool , Adolescent , Young Adult , Aged , Infant
18.
Inorg Chem ; 63(19): 8750-8763, 2024 May 13.
Article En | MEDLINE | ID: mdl-38693869

Using a quinoline substituted Qsal ligand, Hqsal-5-Brq (Hqsal-5-Brq = N-(5-bromo-8-quinolyl)salicylaldimine), four FeIII complexes, [Fe(qsal-5-Brq)2]A·CH3OH (Y = NO3- (1NO3), BF4- (2BF4), PF6- (3PF6), OTf- (4OTf), were prepared and characterized. Structure analysis revealed that complex 2BF4 contained two species (2BF4(P1̅) and 2BF4(C2/c)). In these compounds except 3PF6, the [Fe(qsal-5-Brq)2]+ cations form 1D chains through π-π interactions and other weak interactions. Adjacent chains are connected to form the 2D "Chain Layer" structures and 3D structures through various supramolecular interactions. For 3PF6, a "Dimer Chain" structure is formed from the loosely connected dimers. Magnetic studies revealed that compounds 1NO3 and 2BF4(P1̅) displayed abrupt hysteretic SCO with the transition temperature T1/2↓ = 235 K, T1/2↑ = 240 K for 1NO3 and T1/2↓ = 230 K, T1/2↑ = 235 K for 2BF4(P1̅), while compounds 3PF6 and 4OTf are in the HS state. Desolvation of the complexes significantly modifies their SCO properties: the desolvated 1NO3 and 2BF4 show a gradual SCO, desolvated 3PF6 undergoes a two-step SCO, and desolvated 4OTf exhibits a hysteretic transition. Overall, this work reported the FeIII-SCO complexes of the quinoline-substituted Hqsal ligand and highlighted the potential of these ligands for the development of interesting FeIII-SCO materials.

19.
Sci Total Environ ; 933: 173100, 2024 Jul 10.
Article En | MEDLINE | ID: mdl-38735330

Microplastics (MPs) are emerging pollutants of terrestrial ecosystems. The impacts of MP particle size on terrestrial systems remain unclear. The current study aimed to investigate the effects of six particle sizes (i.e., 4500, 1500, 500, 50, 5, and 0.5 µm) of polyethylene (PE) and polyvinyl chloride (PVC) on soil respiration, enzyme activity, bacteria, fungi, protists, and seed germination. MPs significantly promoted soil respiration, and the stimulating effects of PE were the strongest for medium and small-sized (0.5-1500 µm) particles, while those of PVC were the strongest for small particle sizes (0.5-50 µm). Large-sized (4500 µm) PE and all sizes of PVC significantly improved soil urease activity, while medium-sized (1500 µm) PVC significantly improved soil invertase activity. MPs altered the soil microbial community diversity, and the effects were especially pronounced for medium and small-sized (0.5-1500 µm) particles of PE and PVC on bacteria and fungi and small-sized (0.5 µm) particles of PE on protists. The impacts of MPs on bacteria and fungi were greater than on protists. The seed germination rate of Brassica chinensis decreased gradually with the decrease in PE MPs particle size. Therefore, to reduce the impact of MPs on soil ecosystems, effective measures should be taken to avoid the transformation of MPs into smaller particles in soil environmental management.


Germination , Microbiota , Microplastics , Particle Size , Soil Microbiology , Soil Pollutants , Microplastics/pharmacology , Soil Pollutants/pharmacology , Germination/drug effects , Soil/chemistry , Soil/parasitology , Bacteria/drug effects , Bacteria/enzymology , Fungi/drug effects , Fungi/enzymology , Eukaryota/drug effects , Eukaryota/enzymology , Enzyme Activation/drug effects , Microbiota/drug effects , Biodiversity , Brassica/drug effects , Brassica/growth & development
20.
Mil Med Res ; 11(1): 30, 2024 May 20.
Article En | MEDLINE | ID: mdl-38764065

BACKGROUND: Benign prostatic hyperplasia (BPH) is the most common disease in elderly men. There is increasing evidence that periodontitis increases the risk of BPH, but the specific mechanism remains unclear. This study aimed to explore the role and mechanism of the key periodontal pathogen Porphyromonas gingivalis (P. gingivalis) in the development of BPH. METHODS: The subgingival plaque (Sp) and prostatic fluid (Pf) of patients with BPH concurrent periodontitis were extracted and cultured for 16S rDNA sequencing. Ligature-induced periodontitis, testosterone-induced BPH and the composite models in rats were established. The P. gingivalis and its toxic factor P. gingivalis lipopolysaccharide (P.g-LPS) were injected into the ventral lobe of prostate in rats to simulate its colonization of prostate. P.g-LPS was used to construct the prostate cell infection model for mechanism exploration. RESULTS: P. gingivalis, Streptococcus oralis, Capnocytophaga ochracea and other oral pathogens were simultaneously detected in the Pf and Sp of patients with BPH concurrent periodontitis, and the average relative abundance of P. gingivalis was found to be the highest. P. gingivalis was detected in both Pf and Sp in 62.5% of patients. Simultaneous periodontitis and BPH synergistically aggravated prostate histological changes. P. gingivalis and P.g-LPS infection could induce obvious hyperplasia of the prostate epithelium and stroma (epithelial thickness was 2.97- and 3.08-fold that of control group, respectively), and increase of collagen fibrosis (3.81- and 5.02-fold that of control group, respectively). P. gingivalis infection promoted prostate cell proliferation, inhibited apoptosis, and upregulated the expression of inflammatory cytokines interleukin-6 (IL-6; 4.47-fold), interleukin-6 receptor-α (IL-6Rα; 5.74-fold) and glycoprotein 130 (gp130; 4.47-fold) in prostatic tissue. P.g-LPS could significantly inhibit cell apoptosis, promote mitosis and proliferation of cells. P.g-LPS activates the Akt pathway through IL-6/IL-6Rα/gp130 complex, which destroys the imbalance between proliferation and apoptosis of prostate cells, induces BPH. CONCLUSION: P. gingivalis was abundant in the Pf of patients with BPH concurrent periodontitis. P. gingivalis infection can promote BPH, which may affect the progression of BPH via inflammation and the Akt signaling pathway.


Interleukin-6 , Porphyromonas gingivalis , Prostatic Hyperplasia , Receptors, Interleukin-6 , Male , Prostatic Hyperplasia/complications , Porphyromonas gingivalis/pathogenicity , Rats , Humans , Animals , Interleukin-6/analysis , Interleukin-6/metabolism , Prostate , Periodontitis/complications , Periodontitis/microbiology , Aged , Middle Aged , Rats, Sprague-Dawley , Disease Models, Animal , Signal Transduction/physiology
...