Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Food Chem ; 462: 141012, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39217747

ABSTRACT

To investigate the variation and fractionation of stable isotopes from irrigation water to soil, grapes, and wine, δ2H, δ18O, and δ17O in different samples from 10 regions in China were determined using a water isotope analyser. The values were significantly different among regions according to the chemometric analysis. All isotopes were significantly and positively correlated with irrigation water-soil and grape-wine. A significant water isotopic fractionation effect was observed from the irrigation water to the soil, grapes, and wine. Stable isotope distribution characteristics correlated with longitude, latitude, altitude, temperature, precipitation, station pressure and wind speed. The linear discriminant analysis (LDA), random forest (RF), support vector machine (SVM), and feed-forward neural network (FNN) models 58.33-100 %, 80-100 %, 53.33-100 %, and 73.33-100 % accurate for distinguishing the geographical origins of all samples from training and test data, respectively. These findings provide a theoretical basis for authenticating the geographic origin of Chinese wines using stable isotope analysis.


Subject(s)
Agricultural Irrigation , Oxygen Isotopes , Soil , Vitis , Wine , Wine/analysis , Vitis/chemistry , Vitis/classification , Vitis/growth & development , Soil/chemistry , Oxygen Isotopes/analysis , China , Water/analysis , Water/chemistry , Deuterium/analysis , Discriminant Analysis , Geography , Chemical Fractionation
2.
J Environ Manage ; 370: 122684, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342839

ABSTRACT

Net-zero entrepreneurship is a novel concept introduced in the context of carbon neutrality, and exploring whether it can catalyze decarbonized economic growth is a worthy pursuit. This study constructs a comprehensive, low-carbon endogenous economic growth model to scrutinize the intricate nexus between net-zero entrepreneurship and decarbonized economic growth. Empirical validation employs a series of multiple regression models to rigorously test the hypotheses derived from the theoretical framework using an extensive dataset spanning Chinese provinces. The results reveal a nuanced landscape. (i) Net-zero entrepreneurship plays a remarkable role in promoting decarbonization growth, with considerable regional heterogeneity. (ii) Green technology progress exhibits a notable mediating effect. (iii) Environmental regulation and industrial structure optimization have positive moderating effects. (iv) The results passed alternative dependent variable and one-phase lag regression robustness tests. In a distinct contribution to entrepreneurship literature, this study augments the discourse on strategies to steer low-carbon transitions. The research findings indicate that net-zero entrepreneurship can accelerate the global decarbonization process, and green technology progress is a significant driving mechanism in this process. Additionally, it is essential to strengthen environmental agencies' regulatory oversight and optimize industrial structures to pave the way for transformative sustainable growth. In the future, more entrepreneurs should be encouraged to engage in green technology and business model innovation to contribute to global decarbonization efforts.

3.
Plant Cell Rep ; 43(9): 219, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39155298

ABSTRACT

KEY MESSAGE: Exogenous application of 24-epibrassinolide can alleviate oxidative damage, improve photosynthetic capacity, and regulate carbon and nitrogen assimilation, thus improving the tolerance of grapevine (Vitis vinifera L.) to drought stress. Brassinosteroids (BRs) are a group of plant steroid hormones in plants and are involved in regulating plant tolerance to drought stress. This study aimed to investigate the regulation effects of BRs on the carbon and nitrogen metabolism in grapevine under drought stress. The results indicated that drought stress led to the accumulation of superoxide radicals and hydrogen peroxide and an increase in lipid peroxidation. A reduction in oxidative damage was observed in EBR-pretreated plants, which was probably due to the improved antioxidant concentration. Moreover, exogenous EBR improved the photosynthetic capacity and sucrose phosphate synthase activity, and decreased the sucrose synthase, acid invertase, and neutral invertase, resulting in improved sucrose (190%) and starch (17%) concentrations. Furthermore, EBR pretreatment strengthened nitrate reduction and ammonium assimilation. A 57% increase in nitrate reductase activity and a 13% increase in glutamine synthetase activity were observed in EBR pretreated grapevines. Meanwhile, EBR pretreated plants accumulated a greater amount of proline, which contributed to osmotic adjustment and ROS scavenging. In summary, exogenous EBR enhanced drought tolerance in grapevines by alleviating oxidative damage and regulating carbon and nitrogen metabolism.


Subject(s)
Brassinosteroids , Drought Resistance , Photosynthesis , Steroids, Heterocyclic , Vitis , Antioxidants/metabolism , Antioxidants/pharmacology , Brassinosteroids/metabolism , Brassinosteroids/pharmacology , Carbon/metabolism , Glucosyltransferases/metabolism , Glutamate-Ammonia Ligase/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Nitrate Reductase/metabolism , Nitrogen/metabolism , Oxidative Stress/drug effects , Photosynthesis/drug effects , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Plant Proteins/genetics , Steroids, Heterocyclic/metabolism , Steroids, Heterocyclic/pharmacology , Stress, Physiological/drug effects , Vitis/drug effects , Vitis/metabolism , Vitis/physiology
4.
Nat Commun ; 15(1): 7040, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147767

ABSTRACT

Diagnosing liver lesions is crucial for treatment choices and patient outcomes. This study develops an automatic diagnosis system for liver lesions using multiphase enhanced computed tomography (CT). A total of 4039 patients from six data centers are enrolled to develop Liver Lesion Network (LiLNet). LiLNet identifies focal liver lesions, including hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), metastatic tumors (MET), focal nodular hyperplasia (FNH), hemangioma (HEM), and cysts (CYST). Validated in four external centers and clinically verified in two hospitals, LiLNet achieves an accuracy (ACC) of 94.7% and an area under the curve (AUC) of 97.2% for benign and malignant tumors. For HCC, ICC, and MET, the ACC is 88.7% with an AUC of 95.6%. For FNH, HEM, and CYST, the ACC is 88.6% with an AUC of 95.9%. LiLNet can aid in clinical diagnosis, especially in regions with a shortage of radiologists.


Subject(s)
Carcinoma, Hepatocellular , Cholangiocarcinoma , Deep Learning , Hemangioma , Liver Neoplasms , Tomography, X-Ray Computed , Humans , Liver Neoplasms/diagnostic imaging , Carcinoma, Hepatocellular/diagnostic imaging , Tomography, X-Ray Computed/methods , Male , Hemangioma/diagnostic imaging , Cholangiocarcinoma/diagnostic imaging , Cholangiocarcinoma/pathology , Female , Liver/diagnostic imaging , Liver/pathology , Middle Aged , Focal Nodular Hyperplasia/diagnostic imaging , Adult , Aged , Area Under Curve , Cysts/diagnostic imaging
5.
Blood Press ; 33(1): 2387025, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39216506

ABSTRACT

OBJECTIVE: Hypertension refers to the elevated blood pressure (BP) in arteries, with a BP reading of 140/90 mm Hg or higher in adults. Over 40% of >25-year-old population have suffered from hypertension. Thus, this study aimed to find novel diagnostic biomarkers for hypertension. METHODS: All hypertension-related mRNA and methylation datasets were downloaded from the GEO database. Liner model method was used to identify differentially expressed genes (DEGs) between hypertension and control groups. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analysis was employed to obtain functional information. CpG sites and the corresponding genes associated with hypertension were screened using epigenome-wide association study (EWAS) analysis. RESULTS: There were 37 DEGs between the hypertension group and control group, which were significantly enriched in 84 Biological Process terms, 31 Cellular Component terms, 18 Molecular Function terms and 9 signalling pathways. EWAS results indicated that 1072 CpG sites were associated with hypertension occurrence, corresponding to 1029 genes. After cross-analysis, complement factor D (CFD) and OTU deubiquitinase, ubiquitin aldehyde binding 2 (OTUB2) with methylation modification were identified as diagnostic markers for hypertension. CONCLUSION: In conclusion, CFD and OTUB2 were potential biomarkers of hypertension occurrence. Our results will provide more information for hypertension diagnosis and would be more reliable combined with multiple biomarkers.


In the GSE24752 dataset, there were 37 differentially expressed genes between the hypertension group and the normal group.In the GSE42774 dataset, there were 1072 CpG sites, corresponding to 1029 genes, associated with hypertension occurrence.CFD and OTUB2 were potential biomarkers that were associated with hypertension occurrence.


Subject(s)
Biomarkers , DNA Methylation , Hypertension , Humans , Hypertension/genetics , Hypertension/diagnosis , Genome-Wide Association Study , CpG Islands , Female
6.
J Orthop Surg Res ; 19(1): 386, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951811

ABSTRACT

BACKGROUND: Bone defects, resulting from substantial bone loss that exceeds the natural self-healing capacity, pose significant challenges to current therapeutic approaches due to various limitations. In the quest for alternative therapeutic strategies, bone tissue engineering has emerged as a promising avenue. Notably, excretory proteins from Toxoplasma gondii (TgEP), recognized for their immunogenicity and broad spectrum of biological activities secreted or excreted during the parasite's lifecycle, have been identified as potential facilitators of osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs). Building on our previous findings that TgEP can enhance osteogenic differentiation, this study investigated the molecular mechanisms underlying this effect and assessed its therapeutic potential in vivo. METHODS: We determined the optimum concentration of TgEP through cell cytotoxicity and cell proliferation assays. Subsequently, hBMSCs were treated with the appropriate concentration of TgEP. We assessed osteogenic protein markers, including alkaline phosphatase (ALP), Runx2, and Osx, as well as components of the BMP/Smad signaling pathway using quantitative real-time PCR (qRT-PCR), siRNA interference of hBMSCs, Western blot analysis, and other methods. Furthermore, we created a bone defect model in Sprague-Dawley (SD) male rats and filled the defect areas with the GelMa hydrogel, with or without TgEP. Microcomputed tomography (micro-CT) was employed to analyze the bone parameters of defect sites. H&E, Masson and immunohistochemical staining were used to assess the repair conditions of the defect area. RESULTS: Our results indicate that TgEP promotes the expression of key osteogenic markers, including ALP, Runx2, and Osx, as well as the activation of Smad1, BMP2, and phosphorylated Smad1/5-crucial elements of the BMP/Smad signaling pathway. Furthermore, in vivo experiments using a bone defect model in rats demonstrated that TgEP markedly promoted bone defect repair. CONCLUSION: Our results provide compelling evidence that TgEP facilitates hBMSC osteogenic differentiation through the BMP/Smad signaling pathway, highlighting its potential as a therapeutic approach for bone tissue engineering for bone defect healing.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Osteogenesis , Rats, Sprague-Dawley , Signal Transduction , Toxoplasma , Mesenchymal Stem Cells/metabolism , Osteogenesis/physiology , Humans , Animals , Signal Transduction/physiology , Cell Differentiation/physiology , Male , Toxoplasma/physiology , Rats , Smad Proteins/metabolism , Protozoan Proteins/metabolism , Bone Morphogenetic Proteins/metabolism , Cells, Cultured
7.
Int Immunopharmacol ; 138: 112583, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38971109

ABSTRACT

The neonatal Fc receptor (FcRn) can transport IgG and antigen-antibody complexes participating in mucosal immune responses that protect the host from most pathogens' invasion via the respiratory, digestive, and urogenital tracts. FcRn expression can be triggered upon stimulation with pathogenic invasion on mucosal surfaces, which may significantly modulate the innate immune response of the host. As an immunoglobulin transport receptor, FcRn is implicated in the pathophysiology of immune-related diseases such as infection and autoimmune disorders. In this review, we thoroughly summarize the recent advancement of FcRn in mucosal immunity and its therapeutic strategy. This includes insights into its regulation mechanisms of FcRn expression influenced by pathogens, its emerging role in mucosal immunity and its potential probability as a therapeutic target in infection and autoimmune diseases.


Subject(s)
Histocompatibility Antigens Class I , Immunity, Mucosal , Receptors, Fc , Humans , Receptors, Fc/immunology , Receptors, Fc/metabolism , Animals , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Infections/immunology , Immunity, Innate
8.
Histol Histopathol ; : 18788, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39041213

ABSTRACT

Gallbladder neuroendocrine carcinomas (GB-NECs) are a rare subtype of malignant gallbladder cancer (GBC). The genetic and molecular characteristics of GB-NECs are rarely reported. This study aims to assess the frequency of microsatellite instability (MSI) in GB-NECs and characterize their clinicopathologic and molecular features in comparison with gallbladder adenocarcinomas (GB-ADCs). Data from six patients with primary GB-NECs and 13 with GB-ADCs were collected and reevaluated. MSI assay, immunohistochemistry for mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2), comprehensive genomic profiling (CGP) via next-generation sequencing (NGS), and evaluation of tumor mutation burden (TMB) were conducted on these samples. The six GB-NEC cases were all female, with a mean age of 62.0±9.2 years. Of these, two cases were diagnosed as large cell neuroendocrine carcinomas (LCNECs), while the remaining four were small cell neuroendocrine carcinomas (SCNECs). Microsatellite states observed in both GB-NECs and GB-ADCs were consistently microsatellite stable (MSS). Notably, TP53 (100%, 6/6) and RB1 (100%, 6/6) exhibited the highest mutation frequency in GB-NECs, followed by SMAD4 (50%, 3/6), GNAS (50%, 3/6), and RICTOR (33%, 2/6), with RB1, GNAS, and RICTOR specifically present in GB-NECs. Immunohistochemical (IHC) assays of p53 and Rb in the six GB-NECs were highly consistent with genetic mutations detected by targeted NGS. Moreover, no statistical difference was observed in TMB between GB-NECs and GB-ADCs (P=0.864). Although overall survival in GB-NEC patients tended to be worse than in GB-ADC patients, this difference did not reach statistical significance (P=0.119). This study has identified the microsatellite states and molecular mutation features of GB-NECs, suggesting that co-mutations in TP53 and RB1 may signify a neuroendocrine inclination in GB-NECs. The IHC assay provides an effective complement to targeted NGS for determining the functional status of p53 and Rb in clinical practice.

9.
Angew Chem Int Ed Engl ; : e202411298, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011619

ABSTRACT

The engineering of tunable photoluminescence (PL) in single materials with a full-spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near-full-spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single-component two-dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+ = (HO)(CH2)2NH3+), is reported, achieved through high-pressure treatment. A pressure-induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the bandgap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N-H…Br and O-H…Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red-shifted PL emissions, leading to the near-full-spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites.

10.
Nanomaterials (Basel) ; 14(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38921929

ABSTRACT

Monodisperse and semi-faceted ultra-small templated mesoporous silica nanoparticles (US-MSNs) of 20-25 nm were synthesized using short-time hydrolysis of tetraethoxysilane (TEOS) at room temperature, followed by a dilution for nucleation quenching. According to dynamic light scattering (DLS), a two-step pH adjustment was necessary for growth termination and colloidal stabilization. The pore size was controlled by cetyltrimethylammonium bromide (CTAB), and a tiny amount of neutral surfactant F127 was added to minimize the coalescence between US-MSNs and to favor the transition towards internal ordering. Flocculation eventually occurred, allowing us to harvest a powder by centrifugation (~60% silica yield after one month). Scanning transmission electron microscopy (STEM) and 3D high-resolution transmission electron microscopy (3D HR-TEM) images revealed that the US-MSNs are partially ordered. The 2D FT transform images provide evidence for the coexistence of four-, five-, and sixfold patterns characterizing an "on-the-edge" crystallization step between amorphous raspberry and hexagonal pore array morphologies, typical of a protocrystalline state. Calcination preserved this state and yielded a powder characterized by packing, developing a hierarchical porosity centered at 3.9 ± 0.2 (internal pores) and 68 ± 7 nm (packing voids) of high potential for support for separation and catalysis.

11.
Food Chem X ; 22: 101502, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38872720

ABSTRACT

To determine the effect of cofermentation of Saccharomyces cerevisiae and different LABs on prune wine quality, this study compared phenolic compounds, organic acids, soluble sugars, biogenic amines and volatile flavor compounds among different treatments. The results showed that inoculation of LAB increased DPPH and total flavonoid content. Malic acid content was reduced in HS, HB and HF. Histamine content in S, F and B was lower than the limits in French and Australian wines. 15 phenolic compounds were identified. Yangmeilin and chlorogenic acid were detected only in HS, HF and HB. 51 volatile flavor compounds were identified, esters being the most diverse and abundant. 14 volatile flavor compounds with OAV > 1 contributed highly to the aroma of prune wine. 9 chemical markers including resveratrol, rutin, and catechin were screened to explain intergroup differences by OPLS-DA. This study provides new insights into the processing and quality analysis of prunes.

12.
Food Chem X ; 22: 101503, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38883920

ABSTRACT

To explore the effect of postharvest dehydration on grape berries and wine quality, we determined physicochemical properties, polyphenols, antioxidant activities, volatile compounds and sensory characteristics for wines brewed by 'Marselan' (Vitis vinifera L.) grapes with 0%, 10%, 15%, 20%, and 25% of water loss. The result showed that postharvest dehydration improved the alcohol content, residual sugar and titratable acidity of Marselan wine. Phenolic compounds and antioxidant activities in wines with a dehydration of 20% have significantly increased. Postharvest dehydration increased the contents of isobutanol, isoamyl alcohol, phenylethyl alcohol, ethyl acetate, isoamyl acetate and ethyl butyrate in Marselan wines, and enhanced the floral, fruity and sweet taste of wines. Marselan wine had the lowest acceptability score under the condition of severe dehydration (25% dehydration), which was related to the significant increase of tannins content. In summary, postharvest dehydration was beneficial in improving the quality of Marselan wine.

13.
Food Chem ; 452: 139616, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38759436

ABSTRACT

To investigate the effects of inoculating with three strains of lactic acid bacteria on prune wine quality during malolactic fermentation, this study determined its antioxidant activity, phenolic compounds, organic acids, and volatile/non-volatile metabolites. The results showed that inoculation with Lactobacillus paracasei SMN-LBK improved the antioxidant activity and phenolic compounds of prune wine. 73 VOCs were detected in prune wine by HS-SPME-GC-MS, and VOC content increased by 4.3% and 9.1% in MLFS and MLFB, respectively. Lactobacillus delbrueckii subsp. Bulgaricus showed better potential for winemaking, and citral and 5-nonanol, were detected in the MLF samples. 39 shared differential metabolites were screened and their metabolic pathways were investigated based on nontargeted metabolomics. Differences in amino acid and flavonoid content between strains reflected their specificity in flavonoid biosynthesis and amino acid biosynthesis. These findings will provide useful information for the biochemical study and processing of prune wine.


Subject(s)
Fermentation , Volatile Organic Compounds , Wine , Wine/analysis , Wine/microbiology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry , Phenols/metabolism , Phenols/chemistry , Phenols/analysis , Antioxidants/metabolism , Antioxidants/chemistry , Lactobacillales/metabolism
14.
Biomed Pharmacother ; 175: 116724, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761424

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) has become one of the most prevalent liver diseases worldwide, and its occurrence is strongly associated with obesity, insulin resistance (IR), genetics, and metabolic stress. Ranging from simple fatty liver to metabolic dysfunction-associated steatohepatitis (MASH), even to severe complications such as liver fibrosis and advanced cirrhosis or hepatocellular carcinoma, the underlying mechanisms of MASLD progression are complex and involve multiple cellular mediators and related signaling pathways. Pattern recognition receptors (PRRs) from the innate immune system, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), RIG-like receptors (RLRs), and DNA receptors, have been demonstrated to potentially contribute to the pathogenesis for MASLD. Their signaling pathways can induce inflammation, mediate oxidative stress, and affect the gut microbiota balance, ultimately resulting in hepatic steatosis, inflammatory injury and fibrosis. Here we review the available literature regarding the involvement of PRR-associated signals in the pathogenic and clinical features of MASLD, in vitro and in animal models of MASLD. We also discuss the emerging targets from PRRs for drug developments that involved agent therapies intended to arrest or reverse disease progression, thus enabling the refinement of therapeutic targets that can accelerate drug development.


Subject(s)
Receptors, Pattern Recognition , Humans , Animals , Receptors, Pattern Recognition/metabolism , Fatty Liver/metabolism , Signal Transduction , Immunity, Innate
15.
Front Pharmacol ; 15: 1354806, 2024.
Article in English | MEDLINE | ID: mdl-38601461

ABSTRACT

Lung injury leads to respiratory dysfunction, low quality of life, and even life-threatening conditions. Circular RNAs (circRNAs) are endogenous RNAs produced by selective RNA splicing. Studies have reported their involvement in the progression of lung injury. Understanding the roles of circRNAs in lung injury may aid in elucidating the underlying mechanisms and provide new therapeutic targets. Thus, in this review, we aimed to summarize and discuss the characteristics and biological functions of circRNAs, and their roles in lung injury from existing research, to provide a theoretical basis for the use of circRNAs as a diagnostic and therapeutic target for lung injury.

16.
Crit Rev Oncol Hematol ; 196: 104325, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462151

ABSTRACT

Abscopal effects are characterized by the emergence of neoplasms in regions unrelated to the primary radiation therapy site, displaying a gradual attenuation or regression throughout the progression of radiation therapy, which have been of interest to scientists since Mole's proposal in 1953. The incidence of abscopal effects in radiation therapy is intricately linked to the immune system, with both innate and adaptive immune responses playing crucial roles. Biological factors impacting abscopal effects ultimately exert their influence on the intricate workings of the immune system. Although abscopal effects are rarely observed in clinical cases, the underlying mechanism remains uncertain. This article examines the biological and physical factors influencing abscopal effects of radiotherapy. Through a review of preclinical and clinical studies, this article aims to offer a comprehensive understanding of abscopal effects and proposes new avenues for future research in this field. The findings presented in this article serve as a valuable reference for researchers seeking to explore this topic in greater depth.


Subject(s)
Neoplasms , Humans , Neoplasms/radiotherapy , Radiotherapy/methods
17.
Food Chem X ; 21: 101091, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38235346

ABSTRACT

Chemical and sensory attributes play a vital role in evaluating the quality of grapes and wines. This study compared basic physicochemical parameters, organic acids, phenolic compounds, and aroma profiles of grapes and wines of six cultivars using chemometrics. The results showed that the reducing sugar contents of Beibinghong, Gongniang, and Granoir grapes were significantly higher than those of others cultivars, whereas their juice yields were significantly lower. The phenolic compound contents in Moldova, Beibinghong, and Gongniang grape skins and wines were higher than those in others cultivars. The organic acid contents in Beibinghong grape and Dunkelfelder wine were highest. Beibinghong and Gongniang grapes and wines showed richer aldehyde and ester concentrations. Beibinghong wine obtained the highest sensory scores. Ethyl decanoate, coumaric acid, and methyl dodecanoate were characteristic variables distinguishing wine cultivars, exhibiting important contributions to their sensory characteristics. These findings were useful for viticulturists and winemakers to select grape varieties.

18.
Mycoses ; 67(1): e13680, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38214420

ABSTRACT

CIITA, a member of NOD-like receptor (NLR) family, is the major MHC II trans-activator and mediator of Th1 immunity, but its function and interaction with NLRP3 have been little studied. We found activation of NLRP3 inflammasome, increased expression of CIITA, CBP, pSTAT1, STAT1, MHC II, IFN-γ and IFN-γ-inducible chemokines (CCL1 and CXCL8), and colocalisation of NLRP3 with CIITA in Malassezia folliculitis lesions, Malassezia globosa-infected HaCaT cells and mouse skin. CoIP with anti-CIITA or anti-NLRP3 antibody pulled down NLRP3 or both CIITA and ASC. NLRP3 silencing or knockout caused CIITA downexpression and their colocalisation disappearance in HaCaT cells and mouse skin of Nlrp3-/- mice, while CIITA knockdown had no effect on NLRP3, ASC, IL-1ß and IL-18 expression. NLRP3 inflammasome inhibitors and knockdown significantly suppressed IFN-γ, CCL1, CXCL8 and CXCL10 levels in M. globosa-infected HaCaT cells. CCL1 and CXCL8 expression was elevated in Malassezia folliculitis lesions and reduced in Nlrp3-/- mice. These results demonstrate that M. globosa can activate NLRP3 inflammasome, CIITA/MHC II signalling and IFN-γ-inducible chemokines in human keratinocytes and mouse skin. NLRP3 may regulate CIITA by their binding and trigger Th1 immunity by secreting CCL1 and CXCL8/IL-8, contributing to the pathogenesis of Malassezia-associated skin diseases.


Subject(s)
Chemokines, C , Folliculitis , Malassezia , Humans , Mice , Animals , Interferon-gamma , Interferons , Histocompatibility Antigens Class II/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes , Promoter Regions, Genetic , Trans-Activators/genetics , Trans-Activators/metabolism , Chemokines/genetics , Keratinocytes
19.
ACS Nano ; 18(4): 3251-3259, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38227818

ABSTRACT

The phenomenon of pressure-induced emission alterations related to complex excitonic dynamics in 2D lead halide perovskites (LHPs) has gained considerable attention for understanding their structure-property relationship and obtaining inaccessible luminescence under ambient conditions. However, the well-known pressure-induced emissions are limited to the formation of self-trapped excitons (STEs) due to the structural distortion under compression, which goes against the advantage of the highly pure emission of LHPs. Here, the pressure-induced detrapping from STEs to free excitons (FEs) accompanied by the dramatic transition from broadband orangish emission to narrow blue emission has been achieved in chiral 2D LHPs and R- and S-[4MeOPEA]2PbBr4, (4MeOPEA = 4-methoxy-α-methylbenzylammonium). The combined experimental and calculated results reveal that the distortion level of PbBr6 octahedra of R- and S-[4MeOPEA]2PbBr4 exhibits an unusually significant reduction as the applied pressure increases, which leads to decreased electron-phonon coupling and self-trapped energy barrier and consequently enables the detrapping of STEs to FEs. This work illustrates the dramatic exciton transfer in 2D LHPs and highlights the potential for realizing highly efficient and pure light emissions by manipulating the structural distortion via strain engineering.

20.
Plant Cell Rep ; 43(2): 30, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195770

ABSTRACT

KEY MESSAGE: Sucrose invertase activity is positively related to osmotic and salt stress resistance in peanut. Sucrose invertases (INVs) have important functions in plant growth and response to environmental stresses. However, their biological roles in peanut are still not fully revealed. In this research, we identified 42 AhINV genes in the peanut genome. They were highly conserved and clustered into three groups with 24 segmental duplication events occurred under purifying selection. Transcriptional expression analysis exhibited that they were all ubiquitously expressed, and most of them were up-regulated by osmotic and salt stresses, with AhINV09, AhINV23 and AhINV19 showed the most significant up-regulation. Further physiochemical analysis showed that the resistance of peanut to osmotic and salt stress was positively related to the high sugar content and sucrose invertase activity. Our results provided fundamental information on the structure and evolutionary relationship of INV gene family in peanut and gave theoretical guideline for further functional study of AhINV genes in response to abiotic stress.


Subject(s)
Arachis , Sugars , Arachis/genetics , beta-Fructofuranosidase/genetics , Salt Stress , Sucrose
SELECTION OF CITATIONS
SEARCH DETAIL