Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
J Hazard Mater ; 453: 131383, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37080023

ABSTRACT

Recently, the cryogel as a special type of hydrogel was widely used in the field of medicine due to its porous structure and good biocompatibilit. However, great challenges existed for its irregular pore size and incompressible property, limiting its application in other fields. In this study, a novel silk fibroin-based cryogel (named SF@PVA/CS) with regulable pore size, excellent elasticity and durability was constructed using a green dual-directional crosslink strategy. The SF@PVA/CS was prepared by using silk fibroin (SF) as bone scaffold, and chitosan (CS) and polyvinyl alcohol (PVA) as polymer hydrogel which was introduced into the inner bone scaffold of SF. Such a brand-new cryogel possessed three-dimensional dual network structure, which can overcome the shortcoming of unregulatable pore size and incompressibility of traditional cryogel. Additionally, the developed SF@PVA/CS membrane was used for water purification for the first time, which exhibited superior selective permeation, excellent anti-fouling and brilliant self-cleaning property, and it can achieve the purification of both oil/water emulsion and methylene blue solution. This study expanded the application of SF-based cryogel, providing a novel routine for designing new-type composite cryogel and widening the application of dual-directional crosslink strategy developed in this study for facilitating the purification of wastewater.


Subject(s)
Chitosan , Fibroins , Water Purification , Fibroins/chemistry , Cryogels , Chitosan/chemistry , Polyvinyl Alcohol/chemistry
2.
Sci Rep ; 13(1): 5251, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37002350

ABSTRACT

Freshwater pollution and shortage have become an imminent problem. Therefore, it is necessary to develop a multi-functional membrane for the production of fresh water. In this work, the regenerated lignocellulose modified cotton fabric was developed as a novel, multi-functional and degradable membrane (LCPT@CF) for efficient oil-water separation and solar steam generation for the first time. The fabrication method has the merits of simple, environmentally friendly and cost effective. The regenerated lignocellulose was adhered on the surface of cotton fabric by tannic acid and polyvinyl alcohol complexes tightly, and the multilayered structures of the LCPT@CF can be formed, which endowed the membranes with underwater superoleophobic property and durability. The underwater superoleophobic property enabled LCPT@CF to purify various kinds of oil-in-water emulsions with a separation efficiency of more than 99.90%. Moreover, benefiting from the excellent photothermal conversion capacity of regenerated lignocellulose, the LCPT@CF achieved high evaporation rate of 1.39 kg m-2 h-1 and favorable evaporation efficiency of 84% under 1 sun illumination, and the LCPT@CF also presented excellent salt-resistance for evaporating seawater for 20 cycles, without salt accumulation. More importantly, the LCPT@CF could be naturally degradable by microorganisms in the natural condition within 3 months, which had outstanding environmental friendliness. These above results demonstrated that the green and efficient LCPT@CF could play great potential in oil-water separation and sewage purification.

3.
Carbohydr Polym ; 300: 120242, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36372477

ABSTRACT

At present, the research and development of adsorbents for oil/water separation are mostly focused on polymer materials. The third generation of aerogels are made from nanocellulose prepared from abundant and sustainable cellulose. At present, there is concern regarding the use of nanocellulose aerogels (NAs) in oil/water separation. To improve the selective absorbability, the NAs should be hydrophobically modified, and in this review, we summarized the progress made in hydrophobic modification methods. Additionally, the typical materials used for hydrophobic modification of NAs in recent years were reviewed, and then, we discussed the fabrication of nanocellulose composite aerogels (NCAs) with different properties for use in oil/water separation. Moreover, the additional desirable properties of NAs used in oil/water separation processes are systematically discussed according to the different separation requirements, and the conclusions regarding the relationship between the oil adsorption capacity and different NA parameters are summarized. Finally, the outlook for and challenges faced in the construction of efficient NAs for oil/water separation were put forward.


Subject(s)
Cellulose , Polymers , Cellulose/chemistry , Adsorption , Hydrophobic and Hydrophilic Interactions , Gels/chemistry
4.
Sci Total Environ ; 856(Pt 2): 159271, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36209877

ABSTRACT

To date, most existing engineering materials have difficulty simultaneously separating oil/water and removing heavy metals from complex oily wastewater. In response to this challenge, a novel multifunctional composite hydrogel membrane (named PVA-CS-LDHs) was fabricated by incorporating chitosan (CS) and nanohydrotalcite (LDHs) into a polyvinyl alcohol (PVA) hydrogel. This material was developed using an easy yet versatile strategy of freezing and salting-out, which can enable the formation of a PVA-CS-LDH hydrogel membrane in one step and endow the PVA-CS-LDHs with high strength, excellent stretchability, favourable shape recoverability, and an ideal 3D microstructure. The PVA-CS-LDH membrane can purify emulsified oil and metal ions simultaneously with a separation efficiency of 99.89 % for emulsified oil and a removal efficiency of 97.44 % for Pb2+ ions. Additionally, the high-efficiency, multifunctional, high-antifouling and eco-friendly properties of the PVA-CS-LDH membrane make it a promising hydrogel material for both emulsified oil separation and heavy metal ion removal. Thus, this material provides critical application potential that can address scientific and technological challenges in complex oily wastewater purification.


Subject(s)
Chitosan , Metals, Heavy , Wastewater/chemistry , Polyvinyl Alcohol/chemistry , Lead , Adsorption , Chitosan/chemistry , Ions , Hydrogels/chemistry
5.
Water Res ; 220: 118720, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35700644

ABSTRACT

Twelve sampling sites from two basins of Lake Chaohu were studied seasonally from June 2020 to April 2021 in Hefei City (China) to better understand the effect of organic carbon (C) quantity and composition on nitrate (NO3--N) reduction pathways. Serious algal bloom in the west basin of Lake Chaohu (WLC) resulted in higher organic C accumulation and NO3--N deficiency in interstitial water compared to the east basin of Lake Chaohu (ELC), jointly leading to a high C/NO3--N ratio. This triggered dissimilatory nitrate reduction to ammonium (DNRA) over denitrification in terms of higher DNRA rate, nitrogen retaining index (NRI), and nrfA gene abundance mediating DNRA. Furthermore, high oxygen-alkyl C and abundance of functional genes mediating labile organic C decomposition and DNRA suggested that the alkyl carbon-oxygen bond was responsible for DNRA induction. Different bacterial community composition and diversity involved in C and nitrogen (N) metabolism in two basins indicated that bacteria in sediments of WLC were more active in NO3--N reduction. Spearman correlation analysis showed that the less represented genera, such as Thiobacillus and Clostridium, were positively correlated with both organic C and NO3--N reduction rates, respectively. Hence, organic C composition could affect NO3--N reduction function by shaping the specific bacterial community.


Subject(s)
Ammonium Compounds , Nitrates , Ammonium Compounds/metabolism , Bacteria/genetics , Bacteria/metabolism , Carbon/metabolism , Denitrification , Lakes , Nitrates/chemistry , Nitrogen/metabolism , Nitrogen Oxides/metabolism , Organic Chemicals/metabolism , Oxygen/metabolism
6.
Sci Rep ; 11(1): 11960, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099822

ABSTRACT

Superhydrophobic sponges have considerable potential for oil/water separation. Most of the methods used for superhydrophobic modification of sponges require toxic or harmful solvents, which have the drawbacks of hazardous to environment, expensive, and complex to utilize. Moreover, the hydrophobic layer on the surface of sponge is often easily destroyed. In this paper, a highly efficient superhydrophobic sponge with excellent reusability was developed by using a facile, simple and environmentally friendly dopamine biomimetic bonding method. Different types of sponges, such as melamine, polyethylene or polyurethane sponge wastes, were used as raw materials to prepare superhydrophobic sponges, which possess the advantages of inexpensive and abundant. The effects of different dopamine polymerization time and different hydrophobic agent dosage on the hydrophobicity and oil absorption capacity of melamine sponges were optimized. The study results showed that the water contact angle of the superhydrophobic sponge could reach 153° with excellent organic solvent absorption capacity of 165.9 g/g. Furthermore, the superhydrophobic sponge retained approximately 92.1% of its initial absorption capacity after 35 reutilization cycles. More importantly, the dopamine biomimetic bonding superhydrophobic modification method can be used for different types of sponges. Therefore, a universally applicable, facile, simple and environmentally friendly superhydrophobic modification method for sponges was developed.

7.
Sci Rep ; 11(1): 822, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33437002

ABSTRACT

Metal microspheres doping porous carbon (MMPC), which was prepared using in-situ pyrolysis reduction strategy, could enhance the thermal conductivity of shape-stabilized phase change material (ss-PCM) prepared by MMPC as the matrix. However, in previous studies that were reported, the preparation of MMPC needed to synthesize porous carbon by pyrolysis firstly, and then porous carbon adsorbed metal ions was pyrolyzed again to obtain MMPC, which was tedious and energy-prodigal. In this study, a one-step pyrolysis strategy was developed for the synthesis of MMPC through the pyrolyzation of wheat bran adsorbed copper ions, and the copper microspheres doping wheat bran biochar (CMS-WBB) was prepared. The CMS-WBB was taken as the supporter of stearic acid (SA) to synthesize the ss-PCM of SA/CMS-WBB. The study results about the thermal properties of SA/CMS-WBB demonstrated that the introduction of copper microspheres could not only improve the thermal conductivity of SA/CMS-WBB, but also could increase the SA loading amount of wheat bran biochar. More importantly, the CMS-WBB could be obtained by only one-step pyrolysis, which greatly simplified the preparation process and saved energy consumption. Furthermore, the raw material of wheat bran is a kind of agricultural waste, which is abundant, cheap and easy to obtain. Hence, the SA/CMS-WBB synthesized in this study had huge potentialities in thermal management applications, and a simplified method for improving the thermal properties of ss-PCMs was provided.

8.
Sci Rep ; 10(1): 20843, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33257772

ABSTRACT

In this study, silver microspheres (SMS) were introduced into cotton stalk porous-carbon (CSP) to prepare silver microsphere doping porous-carbon (SMS-CSP), and then SMS-CSP was used as the matrix of polyethylene glycol (PEG) to synthesize shape-stable phase change material of PEG/SMS-CSP. It was found that the introduction of SMS into CSP could not only greatly improve the loading capacity of the porous-carbon for PEG, but also could increase the thermal conductivity of PEG/SMS-CSP. Additionally, the method of introducing SMS into porous-carbon had the advantages of environmental protection and simple operation. Moreover, the raw material of cotton stalk is a kind of agricultural waste, which has the merits of wide source, low price and easy to obtain. Furthermore, in the preparation of cotton stalk porous-carbon, with the increase of pyrolysis temperature the thermal conductivity of PEG/SMS-CSP could be enhanced significantly. The mechanism about the enhancement of thermal conductivity was clarified, which could provide more basic theory for the study about the thermal conductivity of shape-stable phase change materials (ss-PCMs) based on porous-carbon.

9.
Sci Rep ; 10(1): 16061, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32994519

ABSTRACT

Copper microsphere hybrid mesoporous carbon (MPC-Cu) was synthesized by the pyrolysis of polydopamine microspheres doped with copper ions that were prepared using a novel, facile and simple one-step method of dopamine biomimetic polymerization and copper ion adsorption. The resulting MPC-Cu was then used as a supporter for polyethylene glycol (PEG) to synthesize shape-stabilized phase change materials (PEG/MPC-Cu) with enhanced thermal properties. PEG/MPC-Cu was studied by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, differential scanning calorimetry and thermal constant analysis. The results demonstrated that the thermal conductivity of PEG/MPC-Cu was 0.502 W/(m K), which increased by 100% compared to pure PEG [0.251 W/(m K)]. The melting enthalpy of PEG/MPC-Cu was 95.98 J/g, indicating that PEG/MPC-Cu is a promising candidate for future thermal energy storage applications. In addition, the characterization results suggested that PEG-MPC-Cu possessed high thermal stability. Therefore, the method developed in this paper for preparing shape-stabilized phase change materials with improved thermal properties has substantial engineering application prospects.

10.
Sci Rep ; 10(1): 7473, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32366969

ABSTRACT

This study evaluated the Pb(II) sorption capacity of jujube pit biochar (JPB) in aqueous solution, which was derived from jujube pit by pyrolysis and used as a promising and economical adsorbent. More importantly, the utilization of JPB could realize the recycling of agricultural residues. The JPB was characterized using conventional science technologies, including SEM, BET and FT-IR, and the sorption capacity of JPB for lead ions was investigated according to different adsorption parameters, such as the kinetics data, solution pH, isotherms data, coexisting ions of Na+ and K+, desorption and reusability, and solution temperature. The results of kinetics data suggested that the lead ion adsorption process by JPB could be fast to reach equilibrium within 30 min. Additionally, the adsorption capacity of JPB for Pb(II) was calculated to be maximum for 137.1 mg/g at pH 6.0. More importantly, after five cycles of desorption and reuse, the JPB still reached 70% of its original adsorption capacity. All the results suggested that JPB had a broad application prospect for the purification of lead ions in practical.

11.
Polymers (Basel) ; 11(9)2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31540176

ABSTRACT

Polydopamine microspheres (PDAMs), synthesized using a biomimetic method, were used as a matrix for polyethylene glycol (PEG) to develop a novel high-efficient form-stable phase change material (PEG/PDAM) using a simple vacuum impregnation strategy. The PDAMs were first used as a support for the organic phase change materials, and the biomimetic synthesis of the PDAMs had the advantages of easy operation, mild conditions, and environmental friendliness. The characteristics and thermal properties of the PEG/PDAMs were investigated using SEM, FTIR, XRD, TGA, DSC, and XPS, and the results demonstrated that the PEG/PDAMs possessed favourable heat storage capacity, excellent thermal stability, and reliability, and the melting and freezing latent heats of PEG/PDAM-3 reached 133.20 ± 2.50 J/g and 107.55 ± 4.45 J/g, respectively. Therefore, the PEG/PDAMs possess great potential in real-world applications for thermal energy storage. Additionally, the study on the interaction mechanism between the PEG and PDAMs indicated that PEG was immobilized on the surface of PDAMs through hydrogen bonds between the PEG molecules and the PDAMs. Moreover, the PDAMs can also be used as a matrix for other organic materials for the preparation of form-stable phase change materials.

12.
Sci Rep ; 9(1): 11535, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31395898

ABSTRACT

A promising new form-stable phase change material (PA/PB) was fabricated using pinecone biochar (PB) as the supporting material of palmitic acid (PA). The biochar of PB with large surface area was produced by forest residue of pinecone, and it was cheap, environment friendly and easy to prepare. The PB was firstly utilized as the supporter of PA and the characterizations of PA/PB were analyzed by the BET, SEM, XRD, DSC, TGA, FT-IR and thermal conductivity tester. The results demonstrated that the PA was physically absorbed by the PB and the crystal structure of the PA was not destroyed. The results of DSC showed that the fusing and crystallization points of the form-stable phase change material with the maximum content of PA (PA/PB-4) were 59.25 °C and 59.13 °C, and its fusing and freezing latent heat were 84.74 kJ/kg and 83.81 kJ/kg, respectively. The results of TGA suggested that the thermal stability of the PA/PB-4 composite was excellent, which could be used for the applications of thermal energy storage. Furthermore, the thermal conductivity of PA/PB-4 was 0.3926 W/(m∙K), which was increased by 43.76% compared with that of the pure PA. Thus, the study results indicated that the PA/PB-4 had great potential for thermal energy storage applications.

13.
Sci Rep ; 9(1): 293, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30670757

ABSTRACT

In order to remove Pb(II) ions efficiently from aqueous solutions, a new effective adsorbent of norepinephrine-functionalised nanoflower-like organic silica (NE-NFOS) was synthesised by a biomimetic method. Biomimetic functionalization with norepinephrine has the advantages of environment-friendly and easy operation. Characterization of the NE-NFOS using scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller method, and Fourier-transform infrared spectroscopy revealed that the NFOS was modified successfully by norepinephrine. Furthermore, the influences of different parameters including adsorption kinetics, solution pH, adsorption isotherms, concentrations of Na+, K+, Ca2+, and Mg2+, desorption and reusability were studied. The adsorption experiments showed that the capacity of NE-NFOS to adsorb Pb(II) ions improved greatly after functionalisation and adsorption equilibrium was attained within 90 min at a pH of 6.0. The Na+, K+, Ca2+, and Mg2+ concentrations had little influence on the adsorption, and after recycling for five times, the Pb(II) ion removal efficiency of the adsorbent was more than 79% of its initial value. Thus, it was demonstrated that the NE-NFOS with excellent adsorption performance could be a suitable adsorbent for Pb(II) ions removal in practical applications.


Subject(s)
Adsorption , Lead/isolation & purification , Norepinephrine/chemistry , Silicon Dioxide/chemistry , Water Purification/methods , Hydrogen-Ion Concentration , Ions/pharmacology , Kinetics , Microscopy , Spectrum Analysis , Water Pollutants, Chemical/isolation & purification
14.
Int J Mol Sci ; 19(10)2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30301253

ABSTRACT

A new form-stable composite phase change material (PEG/ASB) composed of almond shell biochar (ASB) and polyethylene glycol (PEG) was produced via a simple and easy vacuum impregnation method. The supporting material ASB, which was cost effective, environmentally friendly, renewable and rich in appropriate pore structures, was produced from agricultural residues of almond shells by a simple pyrolysis method, and it was firstly used as the matrix of PEG. Different analysis techniques were applied to investigate the characteristics of PEG/ASB, including structural and thermal properties, and the interaction mechanism between ASB and PEG was studied. The thermogravimetric analysis (TGA) and thermal cycle tests demonstrated that PEG/ASB possessed favorable thermal stability. The differential scanning calorimetry (DSC) curves demonstrated that the capacities for latent heat storage of PEG/ASB were enhanced with increasing PEG weight percentage. Additionally, PEG/ASB had an excellent thermal conductivity of 0.402 W/mK, which was approximately 1.6 times higher than that of the pure PEG due to the addition of ASB. All the study results indicated that PEG/ASB had favorable phase change properties, which could be used for thermal energy storage.


Subject(s)
Charcoal/chemistry , Phase Transition , Polymers/chemical synthesis , Prunus dulcis/chemistry , Costs and Cost Analysis , Polyethylene Glycols/chemistry , Polymers/economics , Refuse Disposal/economics , Refuse Disposal/methods , Thermal Conductivity
15.
Nanomaterials (Basel) ; 8(6)2018 May 31.
Article in English | MEDLINE | ID: mdl-29857486

ABSTRACT

Nanoflower-like wrinkled mesoporous silica (NFMS) was prepared for further application as the carrier of polyethylene glycol (PEG) to fabricate the new, shape-stabilized phase change composites (PEG/NFMS); NFMS could improve the loading content of PEG in the PEG/NFMS. To investigate the properties of PEG/NFMS, characterization approaches, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) analysis, and differential scanning calorimetry (DSC), were carried out. The characterization results illustrated that the PEG was completely adsorbed in the NFMS by physical adsorption, and the nanoflower-like wrinkled silica did not affect the crystal structure of PEG. As reported by the DSC test, although NFMS had a restriction influence on the activity of the PEG molecules, the melting and binding enthalpies of the PEG/NFMS could reach 136.6 J/g and 132.6 J/g, respectively. In addition, the TGA curves demonstrated that no evident weight loss was observed from 20 °C to 190 °C for the PEG/NFMS, and the results revealed that the PEG/NFMS had remarkable thermal stability. These results indicated that the NFMS is a potential carrier of organic phase change material for the preparation of shape-stabilized phase change composites.

16.
RSC Adv ; 8(60): 34224-34231, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-35548616

ABSTRACT

Wrinkled mesoporous silica nanoparticle (WMSN), with a special and highly uniform morphology, large specific surface area and pore volume, high porosity and radial-like wrinkled channels, was successfully prepared by a simple and easy synthetic method. WMSN was used as the matrix of myristic acid (MA) to prepare a new attractive shape-stabilized PCM (MA/WMSN), and the wrinkled channels of WMSN are useful to prevent the leakage of PCM, and increase the thermal stability and phase change enthalpy of shape-stabilized PCM. Characterizations of MA/WMSN, such as structure, crystallization properties, chemical properties and thermal properties were studied, and the interaction mechanism between the WMSN and MA molecules was elucidated. TGA results suggested that MA/WMSN had excellent thermal stability. When the loading of MA in MA/WMSN was 65%, the melting and crystallizing enthalpies of MA/WSSN were 92.0 J g-1 and 86.0 J g-1, respectively. Additionally, the thermal conductivity of MA/WMSN was 0.37 W mK-1, which was about 1.37 times higher than that of the pure MA. All of the study results demonstrated that MA/WMSN possessed of favourable thermal conductivity, high latent heats and excellent thermal stability, and therefore it could be a suitable thermal energy storage material for practical applications.

17.
Molecules ; 22(10)2017 Sep 25.
Article in English | MEDLINE | ID: mdl-28946697

ABSTRACT

Tannic acid-templated mesoporous silica (TAMS) was synthesized using a simple nonsurfactant template method and dopamine-functionalized TAMS (Dop-TAMS), which was prepared via a biomimetic coating, was developed as a new support for immobilization of NHase (NHase@Dop-TAMS). The Dop-TAMS was thoroughly characterized by the transmission electron microscopy (TEM), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and Fourier transform infrared (FT-IR) and the results showed that the Dop-TAMS possessed sufficiently large pore size and volume for the accommodation of NHase. Studying the thermal stability, storage, shaking stability, and pH stability of the free and immobilized NHase indicated that the catalytic properties of NHase@Dop-TAMS were significantly enhanced. Moreover, the NHase@Dop-TAMS exhibited good reusability. All the results demonstrated that Dop-TAMS could be used as an excellent matrix for the immobilization of NHase.


Subject(s)
Biomimetics/methods , Enzymes, Immobilized/metabolism , Hydro-Lyases/metabolism , Silicon Dioxide/chemistry , Tannins/chemistry , Enzymes, Immobilized/chemistry , Hydro-Lyases/chemistry , Porosity
18.
Sci Rep ; 7: 45215, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28327600

ABSTRACT

A simple, environmentally friendly and cost-effective nonsurfactant template method was used to synthesize tannic-acid-templated mesoporous silica nanoparticles (TMSNs), and then dopamine functionalized TMSNs (Dop-TMSNs) which was synthesized by a facile and biomimetic coating strategy, was developed as a new sorbent for the removal of Cu2+ from aqueous solution. The Dop-TMSNs were thoroughly characterized by SEM, TEM, BET, FT-IR and TGA, and the effects of contact time, initial pH, K+ and Na+ concentrations, co-existing polyvalent metal ions and adsorption-desorption cycle times on the sorption capacity of Dop-TMSNs were studied. It was demonstrated that the maximum adsorption capacity of Cu2+ by Dop-TMSNs was 58.7 mg/g at pH 5.5, and the sorption reached equilibrium within 180 min. Moreover, the K+ and Na+ concentrations had a very slight influence on the sorption process and the adsorption capacity of the Dop-TMSNs still remained 89.2% after recycling for four times. All the results indicated that the Dop-TMSNs could be utilized as an excellent sorbent for the sequestration of Cu2+.


Subject(s)
Copper/chemistry , Dopamine/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Water Purification/methods , Adsorption , Porosity , Tannins/chemistry
19.
Sci Rep ; 7: 40395, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28067335

ABSTRACT

Dopmine functionalized mesoporous onion-like silica (DPMS) was synthesized via a biomimetic coating, and lipase Candida sp. 99-125 (LCS) was immobilized in DPMS (LCS@DPMS) by physical adsorption in this study. The DPMS was characterized by SEM, TEM, BET and FT-IR, and it was shown that the DPMS had clear multishell structures with large surface area of 419 m2/g. The activity, pH stability, thermal stability, storage stability, and reusability of the LCS@DPMS were investigated in detail. The stabilities of LCS@DPMS were improved significantly compared to the free lipase and LCS@MS (LCS immobilized in unfunctionalized mesoporous onion-like silica by physical adsorption). All the results indicated that the DPMS had high efficiency and improved stability for lipase immobilization.


Subject(s)
Candida/enzymology , Dopamine/chemistry , Enzymes, Immobilized/metabolism , Lipase/metabolism , Silicon Dioxide/chemistry , Adsorption , Enzyme Stability , Hydrogen-Ion Concentration , Kinetics , Nitrogen/chemistry , Porosity , Spectroscopy, Fourier Transform Infrared
20.
J Hazard Mater ; 286: 325-33, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25590826

ABSTRACT

A novel dopamine-functionalized mesoporous silica (DMS), synthesized by grafting dopamine onto a mesoporous molecular sieve (SBA-15), was developed as a sorbent to extract U(VI) from aqueous solution. The method used to modify SBA-15 was simple, facile and cost-effective. The DMS was characterized by SEM, TEM, XRD and BET, showing that the material had an ordered mesoporous structure and a large surface area. The effect of contact time, pH, ionic strength, temperature, and solid-liquid ratio on the sorption process was investigated. It was demonstrated that the adsorption of U(VI) by DMS was fast and that it can be described by the pseudo-second order-equation where the equilibrium time was 20 min. Additionally, the adsorption isotherm data were fitted well by the Langmuir model with the maximum adsorption capacity of DMS of 196 mg/g at pH 6.0. Furthermore, the influence of the K(+) and Na(+) concentrations and solid-to-liquid ratio on the sorption was very weak, and the values of the thermodynamic parameters revealed that the sorption process was exothermic and spontaneous. All the results suggested that the DMS could be used as an excellent adsorbent to remove U(VI) from aqueous solution.


Subject(s)
Biomimetic Materials/chemistry , Dopamine/chemistry , Silicon Dioxide/chemistry , Uranium/isolation & purification , Water Pollutants, Radioactive/isolation & purification , Water Purification/methods , Adsorption , Kinetics , Models, Chemical , Molecular Structure , Solutions , Surface Properties , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL