Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Adv Mater ; : e2406653, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113338

ABSTRACT

The solution aggregation structure of conjugated polymers is crucial to the morphology and resultant optoelectronic properties of organic electronics and is of considerable interest in the field. Precise characterizations of the solution aggregation structures of organic photovoltaic (OPV) blends and their temperature-dependent variations remain challenging. In this work, the temperature-dependent solution aggregation structures of three representative high-efficiency OPV blends using small-angle X-ray/neutron scattering are systematically probed. Three cases of solution processing resiliency are elucidated in state-of-the-art OPV blends. The exceptional processing resiliency of high-efficiency PBQx-TF blends can be attributed to the minimal changes in the multiscale solution aggregation structure at elevated temperatures. Importantly, a new parameter, the percentage of acceptors distributed within polymer aggregates (Ф), for the first time in OPV blend solution, establishes a direct correlation between Ф and performance is quantified. The device performance is well correlated with the Kuhn length of the cylinder related to polymer aggregates L1 at the small scale and the Ф at the large scale. Optimal device performance is achieved with L1 at ≈30 nm and Ф within the range of 60 ± 5%. This study represents a significant advancement in the aggregation structure research of organic electronics.

2.
Food Nutr Res ; 682024.
Article in English | MEDLINE | ID: mdl-38716355

ABSTRACT

Anthocyanin (ACN) is a natural antioxidant with multiple biological activities, and the aim of this study was to evaluate the protective effect of ACN on the development and progression of lung cancer and to further explore its possible mechanism of action. In vivo, we fed C57BL/6J mice a 0.5%ACN diet or a control diet to observe their effects on the development and progression of urethane-induced lung cancer. In vitro, multiple lung cancer cell lines were used to investigate the effects of C3G on cell viability. The results showed a reduction in lung tumor burden and downregulation of oxidative phosphorylation and fatty acid degradation pathways in lung tissue of urethane-administrated ACN-fed mice compared with control diet-fed mice. In vitro, cyanidin-3-O-glucoside chloride (C3G) intervention treatment significantly inhibited proliferation and apoptosis of A549 cells. This process is likely due to the modulation of AMPK/mTOR signaling pathway by C3G to regulate cellular fatty acid metabolism and reduce intracellular lipid accumulation which affects the growth of lung cancer cells. These results suggest that ACN can inhibit the development and progression of urethane-induced lung tumors and alter the lipid metabolism of tumors in C57BL/6J mice.

3.
Food Chem ; 448: 139103, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38547708

ABSTRACT

The protein content (PC) and wet gluten content (WGC) are crucial indicators determining the quality of wheat, playing a pivotal role in evaluating processing and baking performance. Original reflectance (OR), wavelet feature (WF), and color index (CI) were extracted from hyperspectral and RGB sensors. Combining Pearson-competitive adaptive reweighted sampling (CARs)-variance inflation factor (VIF) with four machine learning (ML) algorithms were used to model accuracy of PC and WGC. As a result, three CIs, six ORs, and twelve WFs were selected for PC and WGC datasets. For single-modal data, the back-propagation neural network exhibited superior accuracy, with estimation accuracies (WF > OR > CI). For multi-modal data, the random forest regression paired with OR + WF + CI showed the highest validation accuracy. Utilizing the Gini impurity, WF outweighed OR and CI in the PC and WGC models. The amalgamation of MLs with multimodal data harnessed the synergies among various remote sensing sources, substantially augmenting model precision and stability.


Subject(s)
Algorithms , Glutens , Machine Learning , Plant Proteins , Triticum , Triticum/chemistry , Glutens/analysis , Glutens/chemistry , Plant Proteins/analysis , Plant Proteins/chemistry
4.
Molecules ; 29(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38398669

ABSTRACT

In this work, to promote the separation of photogenerated carriers, prevent the catalyst from photo-corrosion, and improve the photo-Fenton synergistic degradation of organic pollutants, the coating structure of FeOOH/BiO2-x rich in oxygen vacancies was successfully synthesized by a facile and environmentally friendly two-step process of hydrothermal and chemical deposition. Through a series of degradation activity tests of synthesized materials under different conditions, it was found that FeOOH/BiO2-x demonstrated outstanding organic pollutant degradation activity under visible and near-infrared light when hydrogen peroxide was added. After 90 min of reaction under photo-Fenton conditions, the degradation rate of Methylene Blue by FeOOH/BiO2-x was 87.4%, significantly higher than the degradation efficiency under photocatalysis (60.3%) and Fenton (49.0%) conditions. The apparent rate constants of FeOOH/BiO2-x under photo-Fenton conditions were 2.33 times and 3.32 times higher than photocatalysis and Fenton catalysis, respectively. The amorphous FeOOH was tightly coated on the layered BiO2-x, which significantly increased the specific surface area and the number of active sites of the composites, and facilitated the improvement of the separation efficiency of the photogenerated carriers and the prevention of photo-corrosion of BiO2-x. The analysis of the mechanism of photo-Fenton synergistic degradation clarified that ·OH, h+, and ·O2- are the main active substances involved in the degradation of pollutants. The optimal degradation conditions were the addition of the FeOOH/BiO2-x composite catalyst loaded with 20% Fe at a concentration of 0.5 g/L, the addition of hydrogen peroxide at a concentration of 8 mM, and an initial pH of 4. This outstanding catalytic system offers a fresh approach to the creation and processing of iron-based photo-Fenton catalysts by quickly and efficiently degrading various organic contaminants.

5.
J Neuroinflammation ; 21(1): 29, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38246987

ABSTRACT

Demyelination and failure of remyelination in the central nervous system (CNS) characterize a number of neurological disorders. Spontaneous remyelination in demyelinating diseases is limited, as oligodendrocyte precursor cells (OPCs), which are often present in demyelinated lesions in abundance, mostly fail to differentiate into oligodendrocytes, the myelinating cells in the CNS. In addition to OPCs, the lesions are assembled numbers of activated resident microglia/infiltrated macrophages; however, the mechanisms and potential role of interactions between the microglia/macrophages and OPCs are poorly understood. Here, we generated a transcriptional profile of exosomes from activated microglia, and found that miR-615-5p was elevated. miR-615-5p bound to 3'UTR of myelin regulator factor (MYRF), a crucial myelination transcription factor expressed in oligodendrocyte lineage cells. Mechanistically, exosomes from activated microglia transferred miR-615-5p to OPCs, which directly bound to MYRF and inhibited OPC maturation. Furthermore, an effect of AAV expressing miR-615-5p sponge in microglia was tested in experimental autoimmune encephalomyelitis (EAE) and cuprizone (CPZ)-induced demyelination model, the classical mouse models of multiple sclerosis. miR-615-5p sponge effectively alleviated disease progression and promoted remyelination. This study identifies miR-615-5p/MYRF as a new target for the therapy of demyelinating diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Exosomes , MicroRNAs , Myelin Sheath , Animals , Mice , Exosomes/metabolism , Microglia/metabolism , MicroRNAs/genetics
6.
Biomed Pharmacother ; 171: 116128, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218078

ABSTRACT

Demyelination is a pathological feature commonly observed in various central nervous system diseases. It is characterized by the aggregation of oligodendrocyte progenitor cells (OPCs) in the lesion area, which face difficulties in differentiating into mature oligodendrocytes (OLGs). The differentiation of OPCs requires the presence of Sox10, but its expression decreases under pathological conditions. Therefore, we propose a therapeutic strategy to regulate OPCs differentiation and achieve myelin repair by endogenously loading Sox10 into exosomes. To accomplish this, we generated a lentivirus-armed Sox10 that could anchor to the inner surface of the exosome membrane. We then infected HEK293 cells to obtain exosomes with high expression of Sox10 (exosomes-Sox10, ExoSs). In vitro, experiments confirmed that both Exos and ExoSs can be uptaken by OPCs, but only ExoSs exhibit a pro-differentiation effect on OPCs. In vivo, we administered PBS, Exos, and ExoSs to cuprizone-induced demyelinating mice. The results demonstrated that ExoSs can regulate the differentiation of PDGFRα+ OPCs into APC+ OLGs and reduce myelin damage in the corpus callosum region of the mouse brain compared to other groups. Further testing suggests that Sox10 may have a reparative effect on the myelin sheath by enhancing the expression of MBP, possibly facilitated by the exosome delivery of the protein into the lesion. This endogenously loaded technology holds promise as a strategy for protein-based drugs in the treatment of demyelinating diseases.


Subject(s)
Demyelinating Diseases , Exosomes , Mice , Humans , Animals , Cuprizone , Demyelinating Diseases/chemically induced , Exosomes/metabolism , HEK293 Cells , Myelin Sheath/metabolism , Cell Differentiation , Mice, Inbred C57BL , Disease Models, Animal , SOXE Transcription Factors/metabolism
7.
Angew Chem Int Ed Engl ; 63(11): e202318595, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38224211

ABSTRACT

Achieving a more balanced charge transport by morphological control is crucial in reducing bimolecular and trap-assisted recombination and enhancing the critical parameters for efficient organic solar cells (OSCs). Hence, a facile strategy is proposed to reduce the crystallinity difference between donor and acceptor by incorporating a novel multifunctional liquid crystal small molecule (LCSM) BDTPF4-C6 into the binary blend. BDTPF4-C6 is the first LCSM based on a tetrafluorobenzene unit and features a low liquid crystal phase transition temperature and strong self-assembly ability, conducive to regulating the active layer morphology. When BDTPF4-C6 is introduced as a guest molecule into the PM6 : Y6 binary, it exhibits better compatibility with the donor PM6 and primarily resides within the PM6 phase because of the similarity-intermiscibility principle. Moreover, systematic studies revealed that BDTPF4-C6 could be used as a seeding agent for PM6 to enhance its crystallinity, thereby forming a more balanced and favourable charge transport with suppressed charge recombination. Intriguingly, dual Förster resonance energy transfer was observed between the guest molecule and the host donor and acceptor, resulting in an improved current density. This study demonstrates a facile approach to balance the charge mobilities and offers new insights into boosting the efficiency of single-junction OSCs beyond 20 %.

8.
Br J Pharmacol ; 181(2): 257-272, 2024 01.
Article in English | MEDLINE | ID: mdl-36775813

ABSTRACT

Programmed cell death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) immune checkpoint blockade as a breakthrough in cancer immunotherapy has shown unprecedented positive outcomes in the clinic. However, the overall effectiveness of PD-L1 antibody is less than expected. An increasing number of studies have demonstrated that PD-L1 is widely distributed and expressed not only on the cell membrane but also on the inside of the cells as well as on the extracellular vesicles secreted by tumour cells. Both endogenous and exogenous PD-L1 play significant roles in influencing the therapeutic effect of anti-tumour immunity. Herein, we mainly focused on the distribution and function of PD-L1 and further summarized the potential targeted therapeutic strategies. More importantly, in addition to taking the overall expression abundance of PD-L1 as a predictive indicator for selecting corresponding PD-1/PD-L1 monoclonal antibodies (mAbs), we also proposed that personalized combination therapies based on the different distribution of PD-L1 are worth attention to achieve more efficient and effective therapeutic outcomes in cancer patients. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.


Subject(s)
Neoplasms , Programmed Cell Death 1 Receptor , Humans , B7-H1 Antigen , Ligands , Neoplasms/drug therapy , Immunotherapy , Tumor Microenvironment
9.
Adv Mater ; 36(8): e2307278, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37865872

ABSTRACT

Organic solar cells (OSCs) have potential for applications in wearable electronics. Except for high power conversion efficiency (PCE), excellent tensile properties and mechanical stability are required for achieving high-performance wearable OSCs, while the present metrics barely meet the stretchable requirements. Herein, this work proposes a facile and low-cost strategy for constructing intrinsically stretchable OSCs by introducing a readily accessible polymer elastomer as a diluent for all-polymer photovoltaic blends. Remarkably, record-high stretchability with a fracture strain of up to 1000% and mechanical stability with elastic recovery >90% under cyclic tensile tests are realized in the OSCs active layers for the first time. Specifically, the tensile properties of best-performing all-polymer photovoltaic blends are increased by up to 250 times after blending. Previously unattainable performance metrics (fracture strain >50% and PCE >10%) are achieved simultaneously for the resulting photovoltaic films. Furthermore, an overall evaluation parameter y is proposed for the efficiency-cost- stretchability balance of photovoltaic blend films. The y value of dilute-absorber system is two orders of magnitude greater than those of prior state-of-the-art systems. Additionally, intrinsically stretchable devices are prepared to showcase the mechanical stability. Overall, this work offers a new avenue for constructing and comprehensively evaluating intrinsically stretchable organic electronic films.

10.
Small ; 20(12): e2307993, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37946405

ABSTRACT

Benefiting from the photovoltaic material innovation and delicate device optimization, high-efficiency solar cells employing polymeric materials are thriving. Reducing the gap of cost, efficiency, and stability is the critical challenge faced by the emerging solar cells such as organics, quantum dots and perovskites. Poly(3-alkylthiophene) demonstrates great potential in organic solar cells and quantum dot solar cells as the active layer or the hole transport layer due to its large scalability, excellent photoelectric performance, and favorable hydrophobicity. The present low efficiency and insufficient stability, restrict its commercial application. In this work, a facile strategy of blending two simple polythiophenes is put forward to manipulate the film microstructure and enhance the device efficiency and thermal stability of solar cells. The introduction of P3PT can improve the power conversion efficiency (PCE) of a benchmark cost-effective blend P3HT:O-IDTBR to 7.41%, and the developed ternary solar cells also exhibit increased thermal stability. More strikingly, the quantum dot solar cells with the dual-polythiophene hole transport layer achieve the highest PCE of 10.51%, which is among the topmost efficiencies for quantum dots/polythiophene solar cells. Together, this work provides an effective route to simultaneously optimize the device efficiency and thermal stability of solar cells.

11.
Cell Mol Neurobiol ; 43(7): 3449-3464, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37552355

ABSTRACT

Astrocytes are the most plentiful cell type in the central nervous system (CNS) and perform complicated functions in health and disease. It is obvious that different astrocyte subpopulations, or activation states, are relevant with specific genomic programs and functions. In recent years, the emergence of new technologies such as single-cell RNA sequencing (scRNA-seq) has made substantial advance in the characterization of astrocyte heterogeneity, astrocyte developmental trajectory, and its role in CNS diseases which has had a significant impact on neuroscience. In this review, we present an overview of astrocyte development, heterogeneity, and its essential role in the physiological and pathological environments of the CNS. We focused on the critical role of single-cell sequencing in revealing astrocyte development, heterogeneity, and its role in different CNS diseases.


Subject(s)
Astrocytes , Central Nervous System , Astrocytes/metabolism , Neurogenesis , RNA/metabolism
12.
Front Physiol ; 14: 1194997, 2023.
Article in English | MEDLINE | ID: mdl-37293262

ABSTRACT

Insect carboxylesterases (CXEs) can be expressed in multiple tissues and play crucial roles in detoxifying xenobiotic insecticides and degrading olfactory cues. Therefore, they have been considered as an important target for development of eco-friendly insect pest management strategies. Despite extensive investigation in most insect species, limited information on CXEs in sibling moth species is currently available. The Ectropis obliqua Prout and Ectropis grisescens Warren are two closely related tea geometrid species, which share the same host of tea plant but differ in geographical distribution, sex pheromone composition, and symbiotic bacteria abundance, providing an excellent mode species for studies of functional diversity of orthologous CXEs. In this study, we focused on EoblCXE14 due to its previously reported non-chemosensory organs-biased expression. First, the EoblCXE14 orthologous gene EgriCXE14 was cloned and sequence characteristics analysis showed that they share a conserved motif and phylogenetic relationship. Quantitative real-time polymerase chain reaction (qRT-PCR) was then used to compare the expression profiles between two Ectropis spp. The results showed that EoblCXE14 was predominately expressed in E. obliqua larvae, whereas EgriCXE14 was abundant in E. grisescens at multiple developmental stages. Interestingly, both orthologous CXEs were highly expressed in larval midgut, but the expression level of EoblCXE14 in E. obliqua midgut was significantly higher than that of EgriCXE14 in E. grisescens midgut. In addition, the potential effect of symbiotic bacteria Wolbachia on the CXE14 was examined. This study is the first to provide comparative expression profiles of orthologous CXE genes in two sibling geometrid moth species and the results will help further elucidate CXEs functions and identify a potential target for tea geometrid pest control.

13.
Nat Commun ; 14(1): 2926, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37217503

ABSTRACT

With the power conversion efficiency of binary polymer solar cells dramatically improved, the thermal stability of the small-molecule acceptors raised the main concerns on the device operating stability. Here, to address this issue, thiophene-dicarboxylate spacer tethered small-molecule acceptors are designed, and their molecular geometries are further regulated via the thiophene-core isomerism engineering, affording dimeric TDY-α with a 2, 5-substitution and TDY-ß with 3, 4-substitution on the core. It shows that TDY-α processes a higher glass transition temperature, better crystallinity relative to its individual small-molecule acceptor segment and isomeric counterpart of TDY-ß, and a more stable morphology with the polymer donor. As a result, the TDY-α based device delivers a higher device efficiency of 18.1%, and most important, achieves an extrapolated lifetime of about 35000 hours that retaining 80% of their initial efficiency. Our result suggests that with proper geometry design, the tethered small-molecule acceptors can achieve both high device efficiency and operating stability.

14.
Eye Vis (Lond) ; 10(1): 11, 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36737796

ABSTRACT

BACKGROUND: To assess the accuracy of contrast sensitivity function (CSF) in detecting dysthyroid optic neuropathy (DON) at an early stage in thyroid-associated ophthalmopathy (TAO) patients and to examine potential factors that may be linked to early visual impairments in these individuals. METHODS: A total of 81 TAO patients (50 non-DON and 31 DON), and 24 control subjects participated in the study. CSF was measured with the quick CSF (qCSF) method. Optical coherence tomography angiography (OCTA) images of the ganglion cell complex layer (GCCL), superficial and deep retinal capillary plexuses (SRCP and DRCP) in a 3 mm diameter area around the macula were evaluated. RESULTS: Compared with the controls, the area under the log contrast sensitivity function (AULCSF) and SRCP density were significantly reduced in non-DON and DON patients (all P < 0.05). The GCCL thickness of the DON patients was thinner than that of the controls and non-DON patients (all P < 0.05). The AULCSF was significantly correlated with spherical equivalent refractive error, muscle index, SRCP density and GCCL thickness in TAO patients, respectively (all P < 0.05). However, stepwise multi-regression analysis showed that the AULCSF was only significantly correlated with SRCP density (P < 0.001). Receiver operating characteristic curve analysis showed that the AULCSF produced the most accurate discrimination between non-DON and DON patients from the controls (AUC = 0.831, 0.987, respectively; all P < 0.001). CONCLUSIONS: CSF change in the early stage of DON is related to SRCP density. It can be an early indicator of visual impairments associated with DON in TAO patients.

15.
J Neurochem ; 164(4): 468-480, 2023 02.
Article in English | MEDLINE | ID: mdl-36415921

ABSTRACT

Oligodendrocyte progenitor cells (OPCs) originate in the ventricular zone (VZ) of the brain and spinal cord, and their primary function is to differentiate into oligodendrocytes (OLs). Studies have shown that OPCs and OLs are pathologically and physiologically heterogeneous. Previous transcriptome analyses used Bulk RNA-seq, which compares average gene expression in cells and does not allow for heterogeneity. In recent years, the development of single-cell sequencing (scRNA-seq) and single-cell nuclear sequencing (snRNA-seq) has allowed us to study an individual cell. In this review, sc/snRNA-seq was used to study the different subpopulations of OL lineage cells, their developmental trajectories, and their applications in related diseases. These techniques can distinguish different subpopulations of cells, and identify differentially expressed genes in particular cell types under certain conditions, such as treatment or disease. It is of great significance to the study of the occurrence, prevention, and treatment of various diseases.


Subject(s)
Oligodendroglia , Spinal Cord , Cell Lineage , Oligodendroglia/metabolism , Brain , RNA, Small Nuclear/metabolism , Cell Differentiation/physiology
16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-979400

ABSTRACT

@#[摘 要] 目的:探讨miR-216b-5p对食管癌Eca109细胞顺铂(DDP)耐药性的影响及其作用机制。方法:采用qPCR法检测miR-216b-5p在食管癌细胞TE-1、KYSE-150、Eca109和耐药细胞Eca109/DDP中的表达水平。利用脂质体转染技术分别将miR-216b-5p mimic及mimic NC、自噬相关蛋白5(ATG5)过表达质粒转染到Eca109/DDP细胞中,用CCK-8、EdU法和FCM分别检测转染后细胞的增殖和凋亡;mRFP-eGFP-LC3双荧光标记实验检测mRFP-eGFP-LC3慢病毒感染后各组细胞自噬发生情况,WB法检测自噬相关蛋白LC3、Beclin 1和P62表达。用荧光素酶报告基因实验验证miR-216b-5p与ATG5的靶向关系,WB法检测ATG5的表达。建立裸鼠Eca109/DDP细胞移植瘤模型,观察miR-216b-5p过表达对移植瘤生长的影响。结果:miR-216b-5p在TE-1、KYSE-150、Eca109和Eca109/DDP细胞中均呈低表达(均P<0.05)。过表达miR-216b-5p可显著抑制Eca109/DDP细胞的增殖并诱导凋亡(均P<0.05),减少细胞中自噬小体数量(P<0.05),下调LC3Ⅱ/LC3Ⅰ比值和Beclin 1蛋白水平、上调P62蛋白水平(均P<0.05)。双荧光素酶报告基因实验证实miR-216b-5p靶向并负调控ATG5的表达(P<0.05),过表达ATG5可使miR-216b-5p mimic对Eca109/DDP细胞增殖、自噬的抑制作用和凋亡的诱导作用明显减弱(均P<0.05),自噬相关蛋白P62表达降低、LC3Ⅱ/LC3Ⅰ比值和Beclin 1表达升高(均P<0.05)。荷瘤实验结果表明,miR-216b-5p过表达可显著抑制裸鼠移植瘤的生长(P<0.05)。结论:miR-216b-5p过表达可逆转食管癌Eca109/DDP细胞对DDP的耐药性,其机制可能与靶向负调控ATG5表达并影响细胞自噬有关。

17.
Article in English | MEDLINE | ID: mdl-35897506

ABSTRACT

In view of the pedestrian space violation in an advance right-turn lane, the pedestrian crossing paths are divided by collecting the temporal and spatial information of pedestrians and motor vehicles, and the characteristics of different pedestrian crossing behaviors are studied. Combined with the time and speed indicators of conflict severity, the K-means method is used to divide the level of conflict severity. A multivariate ordered logistic regression model of the severity of pedestrian-vehicle conflict was constructed to quantify the effects of different factors on the severity of the pedestrian-vehicle conflict. The study of 1388 pedestrians and the resulting pedestrian-vehicle conflicts found that the type of spatial violation has a significant impact on pedestrian crossing behavior and safety. The average crossing speed and acceleration variation values of spatially violated pedestrians were significantly higher than those of other pedestrians; there is a significant increase in the severity of pedestrian-vehicle conflicts in areas close to the oncoming traffic; the average percentage of pedestrian-vehicle conflicts due to spatial violations increased by 12%, and the percentage of serious conflicts due to each type of spatial violation increased from 18% to 87%, 74%, 30%, and 63%, respectively, compared with those of non-violated pedestrians. In addition, the decrease in the number of lanes and the increase in speed and vehicle reach all lead to an increase in the severity of pedestrian-vehicle conflicts. The results of the study will help traffic authorities to take measures to ensure pedestrian crossing safety.


Subject(s)
Pedestrians , Accidents, Traffic , Humans , Motor Vehicles , Safety , Walking
18.
Front Nutr ; 9: 841541, 2022.
Article in English | MEDLINE | ID: mdl-35571961

ABSTRACT

The root of Panax notoginseng, a highly valued medicine and functional food, is the main part used for medicinal purposes. However, the stems and leaves are also used in practice. To provide a chemical basis for various uses, a quantitative comparison of 18 saponins using a non-targeted metabolomics approach was established, so as to investigate the chemical profiles of the different parts of P. notoginseng. The established strategy revealed that roots and stems, with their similar chemical characteristics, consisted mainly of protopanaxatriol-type saponins, whereas protopanaxadiol-type saponins were principally present in the leaves. Multivariate analysis further suggested that the quality of the stems and leaves of P. notoginseng was significantly affected by its geographical origin. Furthermore, 52 constituents (26 non-volatile and 26 volatile) were identified as potential markers for discriminating between different parts of the plant. Taken together, the study provides comprehensive chemical evidence for the rational application and exploitation of different parts of P. notoginseng.

19.
Macromol Rapid Commun ; 43(22): e2200229, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35591795

ABSTRACT

The power conversion efficiency of polythiophene organic solar cells is constantly refreshed. Despite the renewed device efficiency, very few efforts have been devoted to understanding how the type of electron acceptor alters the photovoltaic and mechanical properties of these low-cost solar cells. Herein, the authors conduct a thorough investigation of photovoltaic and mechanical characteristics of a simple yet less-explored polythiophene, namely poly(3-pentylthiophene) (P3PT), in three different types of organic solar cells, where ZY-4Cl, PC71 BM, and N2200 are employed as three representative acceptors, respectively. Compared with the reference poly(3-hexylthiophene) (P3HT)-based solar cells, P3PT-based devices, all perform more efficiently. Particularly, the P3PT:ZY-4Cl blend exhibits the highest efficiency (ca. 10%) among the six combinations and outperforms the prior top-performance system P3HT:ZY-4Cl. Furthermore, the blend films based on N2200 exhibit a high crack-onset strain of ∼38% on average, which is approximately 15- and 17-times higher than those of ZY-4Cl and PC71 BM, respectively. The microstructural origins for the above difference are well elucidated by detailed grazing incidence X-ray scattering and microscopy analysis. This work not only underlines the potential of P3PT in prolific solar cell research but also demonstrates the superior tensile properties of polythiophene-based all-polymer blends for the preparation of stretchable solar cells.

20.
Insects ; 13(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35621753

ABSTRACT

Peptidoglycan recognition proteins (PGRPs) are important components of insect immune systems, in which they play key roles. We cloned and sequenced two full-length PGRP, named OfPGRP-A and OfPGRP-B, from the Asian corn borer, Ostrinia furnacalis. These two genes comprise open reading frames of 658 and 759 bp, encoding proteins of 192 and 218 amino acids, respectively. qPCR showed that OfPGRP-A and OfPGRP-B are prominently expressed in the midgut of O. furnacalis fourth instar larvae. After inoculation with Staphylococcus aureus and Bacillus thuringiensis, the expression of OfPGRP-A was significantly upregulated, whereas the expression of OfPGRP-B was enhanced after inoculation with Escherichia coli. This suggests that OfPGRP-A mainly recognizes Gram-positive bacteria and may participate in the Toll signaling pathways, while OfPGRP-B identifies Gram-negative bacteria and may participate in Imd signaling pathways. Our results provide insights into the roles of PGRPs in O. furnacalis immune function and a foundation for using pathogens for the biological control of O. furnacalis.

SELECTION OF CITATIONS
SEARCH DETAIL