Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.551
1.
iScience ; 27(6): 109870, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38799573

Autophagy enhancement in septic liver injury can play a protective role. Nerveless, the mechanism of autophagy-mediated septic liver injury needs further investigation. Our study demonstrated that in septic condition, GLI Family Zinc Finger 2 (GLI2) was elevated, whereas peroxisome-proliferator-activated receptor α (PPARα) was downregulated. Suppressing GLI2 or synovialapoptosis inhibitor 1 (SYVN1) in LPS-exposed cells increased PPARα levels, enhanced cell viability and autophagy, while inhibiting apoptosis. LPS enhanced the GLI2-SYVN1 promoter binding. SYVN1 fostered ubiquitin-mediated degradation of PPARα. IGF2BP3 stabilized GLI2 mRNA by targeting its m6A site. Silencing IGF2BP3 led to decreased GLI2 and SYVN1 but increased PPARα levels, promoting cell survival and autophagy, while repressing apoptosis. This was counteracted by SYVN1 overexpression. In cecal ligation and puncture mice, IGF2BP3, SYVN1, or GLI2 knockdown ameliorated liver damage and augmented autophagy. In summary, IGF2BP3 enhanced GLI2 stability, overexpressed GLI2 subsequent promoted SYVN1 levels by interacting with its promoter, leading to ubiquitinated degradation of PPARα, thereby inhibiting PPARα-mediated autophagy and then exacerbating liver injury in sepsis.

2.
Addiction ; 2024 May 27.
Article En | MEDLINE | ID: mdl-38802984

AIM: The aim of this work was to systematically scope the evidence on opportunistic tobacco smoking cessation interventions for people accessing financial support settings. METHODS: We searched MEDLINE, Embase, PsycINFO and the Cochrane Tobacco Addiction Group specialized register to 21 March 2023. We duplicate screened 20% of titles/abstracts and all full texts. We included primary studies investigating smoking cessation interventions delivered opportunistically to people who smoked tobacco, within settings offering support for problems caused by financial hardship, for example homeless support services, social housing and food banks. Data were charted by one reviewer, checked by another and narratively synthesized. RESULTS: We included 25 studies conducted in a range of financial support settings using qualitative (e.g. interviews and focus groups) and quantitative (e.g. randomized controlled trials, surveys and single arm intervention studies) methodologies. Evidence on the acceptability and feasibility of opportunistic smoking cessation advice was investigated among both clients and providers. Approximately 90% of service providers supported such interventions; however, lack of resources, staff training and a belief that tobacco smoking reduced illicit substance use were perceived barriers. Clients welcomed being asked about smoking and offered assistance to quit and expressed interest in interventions including the provision of nicotine replacement therapy, e-cigarettes and incentives to quit smoking. Six studies investigated the comparative effectiveness of opportunistic smoking cessation interventions on quitting success, with five comparing more to less intensive interventions, with mixed results. CONCLUSIONS: Most studies investigating opportunistic smoking cessation interventions in financial support settings have not measured their effectiveness. Where they have, settings, populations, interventions and findings have varied. There is more evidence investigating acceptability, with promising results.

3.
Front Bioeng Biotechnol ; 12: 1390337, 2024.
Article En | MEDLINE | ID: mdl-38707496

Objective: This study aims to develop and evaluate the biocompatibility and osteogenic potential of a novel injectable strontium-doped hydroxyapatite bone-repair material. Methods: The properties of strontium-doped hydroxyapatite/chitosan (Sr-HA/CS), hydroxyapatite/chitosan (HA/CS) and calcium phosphate/chitosan (CAP/CS) were assessed following their preparation via physical cross-linking and a one-step simplified method. Petri dishes containing Escherichia coli and Staphylococcus epidermidis were inoculated with the material for in vitro investigations. The material was also co-cultured with stem cells derived from human exfoliated deciduous teeth (SHEDs), to assess the morphology and proliferation capability of the SHEDs, Calcein-AM staining and the Cell Counting Kit-8 assay were employed. Osteogenic differentiation of SHEDs was determined using alkaline phosphatase (ALP) staining and Alizarin Red staining. For in vivo studies, Sr-HA/CS was implanted into the muscle pouch of mice and in a rat model of ovariectomy-induced femoral defects. Hematoxylin-eosin (HE) staining was performed to determine the extent of bone formation and defect healing. The formation of new bone was determined using Masson's trichrome staining. The osteogenic mechanism of the material was investigated using Tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemical studies. Results: X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) showed that strontium was successfully doped into HA. The Sr-HA/CS material can be uniformly squeezed using a syringe with a 13% swelling rate. Sr-HA/CS had a significant antibacterial effect against both E. coli and S. epidermidis (p < 0.05), with a stronger effect observed against E. coli. The Sr-HA/CS significantly improved cell proliferation and cell viability in vitro studies (p < 0.05). Compared to CAP/CS and CS, Sr-HA/CS generated a substantially greater new bone area during osteoinduction experiments (p < 0.05, p < 0.001). The Sr-HA/CS material demonstrated a significantly higher rate of bone repair in the bone defeat studies compared to the CAP/CS and CS materials (p < 0.01). The OCN-positive area and TRAP-positive cells in Sr-HA/CS were greater than those in control groups (p < 0.05). Conclusion: A novel injectable strontium-doped HA bone-repair material with good antibacterial properties, biocompatibility, and osteoinductivity was successfully prepared.

4.
Aging (Albany NY) ; 162024 May 06.
Article En | MEDLINE | ID: mdl-38713157

Major Vault Protein (MVP) has emerged as a potential prognostic and immunological biomarker in various cancer types. This pan-cancer study aimed to investigate expression of MVP and its correlation with clinical outcomes and immune infiltration across diverse cancer types. We conducted an analysis of extensive transcriptomic and clinical data from publicly available databases. Our findings unveiled a significant association between MVP expression and cancer progression, with higher expression levels predicting poorer overall survival in multiple cancer types. Importantly, MVP expression demonstrated a close relationship with immune infiltration in the tumor microenvironment, showing that higher expression levels were associated with increased immune cell infiltration. We further validated expression of MVP and function in cancer cell lines A549 and AGS. These compelling results suggest that MVP holds promise as a valuable biomarker for prognostic assessment and the development of immunotherapeutic strategies across various cancer types. Consequently, targeting MVP may offer a compelling therapeutic approach in the treatment of human cancers.

5.
Front Cardiovasc Med ; 11: 1380906, 2024.
Article En | MEDLINE | ID: mdl-38689862

Background: Hypertension (HTN) presents a significant global public health challenge with diverse causative factors. The accumulation of visceral adipose tissue (VAT) due to a high-fat diet (HFD) is an independent risk factor for HTN. While various studies have explored pathogenic mechanisms, a comprehensive understanding of impact of VAT on blood pressure necessitates bioinformatics analysis. Methods: Datasets GSE214618 and GSE188336 were acquired from the Gene Expression Omnibus and analyzed to identify shared differentially expressed genes between HFD-VAT and HTN-VAT. Gene Ontology enrichment and protein-protein interaction analyses were conducted, leading to the identification of hub genes. We performed molecular validation of hub genes using RT-qPCR, Western-blotting and immunofluorescence staining. Furthermore, immune infiltration analysis using CIBERSORTx was performed. Results: This study indicated that the predominant characteristic of VAT in HTN was related to energy metabolism. The red functional module was enriched in pathways associated with mitochondrial oxidative respiration and ATP metabolism processes. Spp1, Postn, and Gpnmb in VAT were identified as hub genes on the pathogenic mechanism of HTN. Proteins encoded by these hub genes were closely associated with the target organs-specifically, the resistance artery, aorta, and heart tissue. After treatment with empagliflozin, there was a tendency for Spp1, Postn, and Gpnmb to decrease in VAT. Immune infiltration analysis confirmed that inflammation and immune response may not be the main mechanisms by which visceral adiposity contributes to HTN. Conclusions: Our study pinpointed the crucial causative factor of HTN in VAT following HFD. Spp1, Postn, and Gpnmb in VAT acted as hub genes that promote elevated blood pressure and can be targets for HTN treatment. These findings contributed to therapeutic strategies and prognostic markers for HTN.

6.
J Hypertens ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38690943

BACKGROUND: Denervation of renal or perirenal adipose tissue (PRAT) can reduce arterial blood pressure in various hypertensive experimental models. Trpv1 (transient receptor potential vanillin 1) channel is highly expressed in the renal sensory nerves and the dorsal root ganglias (DRGs) projected by PRAT. However, it is currently unclear whether Trpv1 in DRGs projected from PRAT can regulate renal hypertension. METHODS: We used resintoxin (RTX) to block the afferent sensory nerves of rat PRAT. We also constructed Trpv1-/- mice and Trpv1+/- mice or used the injection of AAV2-retro-shTrpv1 to detect the effects of Trpv1 knockout or knockdown of PRAT-projected DRGs on deoxycorticosterone acetate (DOCA)-Salt-induced hypertension and kidney injury. RESULTS: Blocking the afferent sensory nerves of PRAT with RTX can alleviate DOCA-Salt-induced hypertension and renal injury in rats. And this blockade reduces the expression of Trpv1 in the DRGs projected by PRAT. Injecting AAV2-retro-shTrpv1 into the PRAT of DOCA-Salt mice also achieved the same therapeutic effect. However, DOCA-Salt-induced hypertension and renal injury can be treated in Trpv1+/- mice but not alleviated or even worsened in Trpv1-/- mice, possibly because of compensatory increase of Trpv5 in DRG of Trpv1-/- mice. CONCLUSION: Reducing, rather than eliminating, Trpv1 in DRG from PRAT-projection can reduce blood pressure and kidney damage in DOCA-Salt in rats or mice. Trpv1 in PRAT-DRGs may serve as a therapeutic target for salt-sensitive hypertension and its renal complications.

7.
Invest New Drugs ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38700579

BACKGROUND: Platinum-based doublet chemotherapy is commonly used in the treatment of non-small cell lung cancer (NSCLC). A growing body of evidence indicates that incorporating antiangiogenic agents into platinum-based chemotherapy may enhance the survival outcomes for NSCLC patients. However, the optimal administration protocol for intravenous recombinant human endostatin (rh-endostatin), an antiangiogenic agent, remains uncertain at present. AIM: This study aims to investigate the efficacy and safety of 5-d continuous intravenous infusion of rh-endostatin in combination with chemotherapy for patients with advanced NSCLC. The predictive biomarkers for this treatment regimen were further probed. METHODS: This prospective, single-arm multicenter study enrolled a total of 48 patients with advanced NSCLC who were histologically or cytologically confirmed but had not received any prior treatment from January 2021 to December 2022. Prior to the chemotherapy, these patients received a continuous intravenous infusion of rh-endostatin (210 mg) over a period of 120 h, using an infusion pump. The chemotherapy regimen included a combination of platinum with either pemetrexed or paclitaxel, given in 21-day cycles. The primary endpoint of the study was median progression-free survival (mPFS), and the secondary endpoints included median overall survival (mOS), objective response rate (ORR), disease control rate (DCR), and assessment of adverse events (AEs). RESULTS: The mPFS was 6.5 months (95% confidence interval (CI): 3.8-9.1 m) while the mOS was 12.3 months (95% CI: 7.6-18.5 m). The ORR and DCR was 52.1% and 75.0%, respectively. Leukopenia (52.1%), anemia (33.3%), and thrombocytopenia (20.8%) were the most common adverse effects and these toxicities were deemed acceptable and manageable. In addition, a correlation was noted between elevated serum carcinoembryonic antigen (CEA) levels and decreased PFS and OS. CONCLUSIONS: The incorporation of a 5-day continuous intravenous infusion of rh-endostatin into platinum-based doublet chemotherapy has demonstrated both safety and efficacy in the treatment of advanced NSCLC. Furthermore, the baseline serum levels of CEA may potentially function as a predictor for the efficacy of rh-endostatin when combined with chemotherapy in NSCLC patients. CLINICALTRIALS: GOV: NCT05574998.

8.
Angew Chem Int Ed Engl ; : e202407613, 2024 May 12.
Article En | MEDLINE | ID: mdl-38736299

Anion-exchange membrane fuel cells provide the possibility to use platinum group metal-free catalysts, but the anodic hydrogen oxidation reaction (HOR) suffers from sluggish kinetics and its source is still debated. Here, over nickel-tungsten (Ni-W) alloy catalysts, we show that the Ni:W ratio greatly governs the HOR performance in alkaline electrolyte. Experimental and theoretical studies unravel that alloying with W can tune the unpaired electrons in Ni, tailoring the potential of zero charge and the catalytic surface to favor hydroxyl adsorption (OHad). The OHad species coordinately interact with potassium (K+) ions, which break the K+ solvation sheath to leave free water molecules, yielding an improved connectivity of hydrogen-bond networks. Consequently, the optimal Ni17W3 alloy exhibits alkaline HOR activity superior to the state-of-the-art platinum on carbon (Pt/C) catalyst and operates steadily with negligible decay after 10,000 cycles. Our findings offer new understandings of alloyed HOR catalysts and will guide rational design of next-generation catalysts for fuel cells.

9.
Prog Mater Sci ; 1422024 Apr.
Article En | MEDLINE | ID: mdl-38745676

Possessing a unique combination of properties that are traditionally contradictory in other natural or synthetical materials, Ga-based liquid metals (LMs) exhibit low mechanical stiffness and flowability like a liquid, with good electrical and thermal conductivity like metal, as well as good biocompatibility and room-temperature phase transformation. These remarkable properties have paved the way for the development of novel reconfigurable or stretchable electronics and devices. Despite these outstanding properties, the easy oxidation, high surface tension, and low rheological viscosity of LMs have presented formidable challenges in high-resolution patterning. To address this challenge, various surface modifications or additives have been employed to tailor the oxidation state, viscosity, and patterning capability of LMs. One effective approach for LM patterning is breaking down LMs into microparticles known as liquid metal particles (LMPs). This facilitates LM patterning using conventional techniques such as stencil, screening, or inkjet printing. Judiciously formulated photo-curable LMP inks or the introduction of an adhesive seed layer combined with a modified lift-off process further provide the micrometer-level LM patterns. Incorporating porous and adhesive substrates in LM-based electronics allows direct interfacing with the skin for robust and long-term monitoring of physiological signals. Combined with self-healing polymers in the form of substrates or composites, LM-based electronics can provide mechanical-robust devices to heal after damage for working in harsh environments. This review provides the latest advances in LM-based composites, fabrication methods, and their novel and unique applications in stretchable or reconfigurable sensors and resulting integrated systems. It is believed that the advancements in LM-based material preparation and high-resolution techniques have opened up opportunities for customized designs of LM-based stretchable sensors, as well as multifunctional, reconfigurable, highly integrated, and even standalone systems.

10.
Phys Med Biol ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38776949

OBJECTIVE: In-beam Positron Emission Tomography (PET) is a promising technology for real-time monitoring of proton therapy. Random coincidences between prompt radiation events and positron annihilation photon pairs can deteriorate imaging quality during beam-on operation. This study aimed to improve the PET image quality by filtering out the prompt radiation events. APPROACH: We investigated a prompt radiation event filtering method based on the accelerator radio frequency (RF) phase and assessed its performance using various prompt gamma energy thresholds. An in-beam PET prototype was used to acquire the data when the 70 MeV proton beam irradiated a water phantom and a mouse. The signal-to-background ratio indicator was utilized to evaluate the quality of the PET reconstruction image. MAIN RESULTS: The selection of the prompt gamma energy threshold will affect the quality of the reconstructed image. Using the optimal energy threshold of 580 keV can obtain a signal-to-background ratio of 1.6 times for the water phantom radiation experiment and 2.0 times for the mouse radiation experiment compared to those without background removal, respectively. SIGNIFICANCE: Our results show that using this optimal threshold can reduce the prompt radiation events, enhancing the signal-to-background ratio of the reconstructed image. This advancement contributes to more accurate real-time range verification in subsequent steps.

11.
JAMA Psychiatry ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38748415

Importance: Overweight and obesity affect 340 million adolescents worldwide and constitute a risk factor for poor mental health. Understanding the association between body mass index (BMI) and mental health in adolescents may help to address rising mental health issues; however, existing studies lack comprehensive evaluations spanning diverse countries and periods. Objective: To estimate the association between BMI and mental health and examine changes over time from 2002 to 2018. Design, Setting, and Participants: This was a repeated multicountry cross-sectional study conducted between 2002 and 2018 and utilizing data from the Health Behaviour in School-aged Children (HBSC) survey in Europe and North America. The study population consisted of more than 1 million adolescents aged 11 to 15 years, with all surveyed children included in the analysis. Data were analyzed from October 2022 to March 2023. Main Outcomes and Measures: Mental health difficulties were measured by an 8-item scale for psychological concerns, scoring from 0 to 32, where a higher score reflects greater psychosomatic issues. BMI was calculated using weight divided by height squared and adjusted for age and sex. Data were fitted by multilevel generalized additive model. Confounders included sex, living with parents, sibling presence, academic pressure, the experience of being bullied, family affluence, screen time, and physical activity. Results: Our analysis of 1 036 869 adolescents surveyed from 2002 to 2018, with a mean (SD) age of 13.55 (1.64) years and comprising 527 585 girls (50.9%), revealed a consistent U-shaped association between BMI and mental health. After accounting for confounders, adolescents with low body mass and overweight or obesity had increased psychosomatic symptoms compared to those with healthy weight (unstandardized ß, 0.14; 95% CI, 0.08 to 0.19; unstandardized ß, 0.27; 95% CI, 0.24 to 0.30; and unstandardized ß, 0.62; 95% CI, 0.56 to 0.67, respectively), while adolescents with underweight had fewer symptoms (unstandardized ß, -0.18; 95% CI, -0.22 to -0.15). This association was observed across different years, sex, and grade, indicating a broad relevance to adolescent mental health. Compared to 2002, psychosomatic concerns increased significantly in 2006 (unstandardized ß, 0.19; 95% CI, 0.11 to 0.26), 2010 (unstandardized ß, 0.14; 95% CI, 0.07 to 0.22), 2014 (unstandardized ß, 0.48; 95% CI, 0.40 to 0.56), and 2018 (unstandardized ß, 0.82; 95% CI, 0.74 to 0.89). Girls reported significantly higher psychosomatic concerns than boys (unstandardized ß, 2.27; 95% CI, 2.25 to 2.30). Compared to primary school, psychosomatic concerns rose significantly in middle school (unstandardized ß, 1.15; 95% CI, 1.12 to 1.18) and in high school (unstandardized ß, 2.12; 95% CI, 2.09 to 2.15). Conclusions and Relevance: Our study revealed a U-shaped association between adolescent BMI and mental health, which was consistent across sex and grades and became stronger over time. These insights emphasize the need for targeted interventions addressing body image and mental health, and call for further research into underlying mechanisms.

12.
J Hazard Mater ; 472: 134499, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38759282

Cl- activated peroxymonosulfate (PMS) oxidation technology can effectively degrade pollutants, but the generation of chlorinated disinfection byproducts (DBPs) limits the application of this technology in water treatment. In this study, a method of nanobubbles (NBs) synergistic Cl-/PMS system was designed to try to improve this technology. The results showed the synergistic effects of NBs/Cl-/PMS were significant and universal while its upgrade rate was from 12.89% to 34.97%. Moreover, the synergistic effects can be further improved by increasing the concentration and Zeta potential of NBs. The main synergistic effects of NBs/Cl-/PMS system were due to the electrostatic attraction of negatively charged NBs to Na+ from NaCl, K+ from PMS, and H+ from phenol, which acted as a "bridge" between Cl- and HSO5- as well as phenol and Cl-/HSO5-, increasing active substance concentration. In addition, the addition of NBs completely changed the oxidation system of Cl-/PMS from one that increases environmental toxicity to one that reduces it. The reason was that the electrostatic attraction of NBs changed the active sites and degradation pathway of phenol, greatly reducing the production of highly toxic DBPs. This study developed a novel environmentally friendly oxidation technology, which provides an effective strategy to reduce the generation of DBPs in the Cl-/PMS system.

13.
DNA Res ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38809753

Pueraria montana var. lobata (P. lobata) is a traditional medicinal plant belonging to the Pueraria genus of Fabaceae family. Pueraria montana var. thomsonii (P. thomsonii) and Pueraria montana var. montana (P. montana) are its related species. However, evolutionary history of the Pueraria genus is still largely unknown. Here, a high-integrity, chromosome-level genome of P. lobata and an improved genome of P. thomsonii were reported. It found evidence for an ancient whole-genome triplication and a recent whole-genome duplication shared with Fabaceae in three Pueraria species. Population genomics of 121 Pueraria accessions demonstrated that P. lobata populations had substantially higher genetic diversity, and P. thomsonii was probably derived from P. lobata by domestication as a subspecies. Selection sweep analysis identified candidate genes in P. thomsonii populations associated with the synthesis of auxin and gibberellin, which potentially play a role in the expansion and starch accumulation of tubers in P. thomsonii. Overall, the findings provide new insights into the evolutionary and domestication history of the Pueraria genome and offer a valuable genomic resource for genetic improvement of these species.

14.
J Vis Exp ; (205)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38557558

In patients with severe necrotizing pancreatitis, pancreatic necrosis and secondary infection of surrounding tissues can quickly spread to the whole retroperitoneal space. Treatment of pancreatic abscess complicating necrotizing pancreatitis is difficult and has a high mortality rate. The well-accepted treatment strategy is early debridement of necrotic tissues, drainage, and postoperative continuous retroperitoneal lavage. However, traditional open surgery has several disadvantages, such as severe trauma, interference with abdominal organs, a high rate of postoperative infection and adhesion, and hardness with repeated debridement. The retroperitoneal laparoscopic approach has the advantages of minimal invasion, a better drainage route, convenient repeated debridement, and avoidance of the spread of retroperitoneal infection to the abdominal cavity. In addition, retroperitoneal drainage leads to fewer drainage tube problems, including miscounting, displacement, or siphon. The debridement and drainage of pancreatic abscess tissue via the retroperitoneal laparoscopic approach plays an increasingly irreplaceable role in improving patient prognosis and saving healthcare resources and costs. The main procedures described here include laying the patient on the right side, raising the lumbar bridge and then arranging the trocar; establishing the pneumoperitoneum and cleaning the pararenal fat tissues; opening the lateral pyramidal fascia and the perirenal fascia outside the peritoneal reflections; opening the anterior renal fascia and entering the anterior pararenal space from the rear; clearing the necrotic tissue and accumulating fluid; and placing drainage tubes and performing postoperative continuous retroperitoneal lavage.


Laparoscopy , Pancreatitis, Acute Necrotizing , Humans , Retroperitoneal Space/surgery , Debridement/methods , Abscess/etiology , Abscess/surgery , Pancreatitis, Acute Necrotizing/surgery , Necrosis
15.
J Vasc Access ; : 11297298241244483, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38682422

BACKGROUND: The mortality is significantly higher in patients undergoing maintenance hemodialysis (MHD) than in the general population. It is well-known that vascular access (VA) is critical for MHD patients. But the association between VA satisfaction and all-cause mortality in MHD patients is still not clear. The aim of this study was to explore the relationship between VA satisfaction and all-cause mortality in MHD patients with a 30-month follow-up. METHODS: Two hundred twenty-nine MHD patients in two dialysis centers were enrolled in this observational prospective study. VA satisfaction was assessed using the Short Form Vascular Access Questionnaire (VAQ). Health-related quality of life (HRQoL) score was calculated with Short Form 36 (SF-36) questionnaire. Multiple logistic regression analysis was used to evaluate the influencing factors of all-cause mortality. RESULTS: During the 30-month follow-up period, 35 patients dropped out of the study. Among them, 31 patients died, and 4 patients stopped MHD treatment after renal transplantation. Multivariable analyses showed that the age, VAQ total score, social functioning score and dialysis-related complication score of the VAQ, the total score and MCS of the SF-36 were factors influencing all-cause mortality in MHD patients. The Kaplan-Meier curve further showed that the cumulative survival probability was significantly higher in the MHD patients with VAQ scores <7 at baseline than in patients with VAQ scores ⩾7 (p = 0.031). INCLUSION: The present study showed that VA satisfaction was significantly associated with all-cause mortality in MHD patients. These findings suggest that a holistic approach is required for VA choice.

16.
Adv Mater ; : e2400236, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38563243

Skin-interfaced high-sensitive biosensing systems to detect electrophysiological and biochemical signals have shown great potential in personal health monitoring and disease management. However, the integration of 3D porous nanostructures for improved sensitivity and various functional composites for signal transduction/processing/transmission often relies on different materials and complex fabrication processes, leading to weak interfaces prone to failure upon fatigue or mechanical deformations. The integrated system also needs additional adhesive to strongly conform to the human skin, which can also cause irritation, alignment issues, and motion artifacts. This work introduces a skin-attachable, reprogrammable, multifunctional, adhesive device patch fabricated by simple and low-cost laser scribing of an adhesive composite with polyimide powders and amine-based ethoxylated polyethylenimine dispersed in the silicone elastomer. The obtained laser-induced graphene in the adhesive composite can be further selectively functionalized with conductive nanomaterials or enzymes for enhanced electrical conductivity or selective sensing of various sweat biomarkers. The possible combination of the sensors for real-time biofluid analysis and electrophysiological signal monitoring with RF energy harvesting and communication promises a standalone stretchable adhesive device platform based on the same material system and fabrication process.

17.
Small ; : e2400272, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38623970

Polymer-in-salt solid-state electrolytes (PIS SSEs) are emerging for high room-temperature ionic conductivity and facile handling, but suffer from poor mechanical durability and large thickness. Here, Al2O3-coated PE (PE/AO) separators are proposed as robust and large-scale substrates to trim the thickness of PIS SSEs without compromising mechanical durability. Various characterizations unravel that introducing Al2O3 coating on PE separators efficiently improves the wettability, thermal stability, and Li-dendrite resistance of PIS SSEs. The resulting PE/AO@PIS demonstrates ultra-small thickness (25 µm), exceptional mechanical durability (55.1 MPa), high decomposition temperature (330 °C), and favorable ionic conductivity (0.12 mS cm-1 at 25 °C). Consequently, the symmetrical Li cells remain stable at 0.1 mA cm-2 for 3000 h, without Li dendrite formation. Besides, the LiFePO4|Li full cells showcase excellent rate capability (131.0 mAh g-1 at 10C) and cyclability (93.6% capacity retention at 2C after 400 cycles), and high-mass-loading performance (7.5 mg cm-2). Moreover, the PE/AO@PIS can also pair with nickel-rich layered oxides (NCM811 and NCM9055), showing a remarkable specific capacity of 165.3 and 175.4 mAh g-1 at 0.2C after 100 cycles, respectively. This work presents an effective large-scale preparation approach for mechanically durable and ultrathin PIS SSEs, driving their practical applications for next-generation solid-state Li-metal batteries.

18.
J Med Case Rep ; 18(1): 205, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38654338

BACKGROUND: Patients with amyotrophic lateral sclerosis present perioperative challenges for clinical anesthesiologists for anesthesia-associated complications. CASE PRESENTATION: A 54-year-old Han woman with a 2-year history of amyotrophic lateral sclerosis was scheduled for hemorrhoidectomy and hemorrhoidal artery ligation. We performed real-time ultrasound-guided sacral plexus block with dexmedetomidine under standard monitoring. The anesthesia method met the surgical demands and avoided respiratory complications during the procedures. There was no neurological deterioration after the surgery and 3 months after, the patient was discharged. CONCLUSIONS: Real-time ultrasound-guided sacral plexus block combined with mild sedation may be an effective and safe technique in patients with amyotrophic lateral sclerosis undergoing hemorrhoidectomy and hemorrhoidal artery ligation.


Amyotrophic Lateral Sclerosis , Dexmedetomidine , Hemorrhoidectomy , Lumbosacral Plexus , Nerve Block , Ultrasonography, Interventional , Humans , Female , Middle Aged , Amyotrophic Lateral Sclerosis/complications , Hemorrhoidectomy/methods , Ligation , Nerve Block/methods , Dexmedetomidine/administration & dosage , Lumbosacral Plexus/diagnostic imaging , Hemorrhoids/surgery , Hypnotics and Sedatives/administration & dosage , Treatment Outcome
19.
Nat Cell Biol ; 26(4): 552-566, 2024 Apr.
Article En | MEDLINE | ID: mdl-38561547

Metabolic crosstalk of the major nutrients glucose, amino acids and fatty acids (FAs) ensures systemic metabolic homeostasis. The coordination between the supply of glucose and FAs to meet various physiological demands is especially important as improper nutrient levels lead to metabolic disorders, such as diabetes and metabolic dysfunction-associated steatohepatitis (MASH). In response to the oscillations in blood glucose levels, lipolysis is thought to be mainly regulated hormonally to control FA liberation from lipid droplets by insulin, catecholamine and glucagon. However, whether general cell-intrinsic mechanisms exist to directly modulate lipolysis via glucose sensing remains largely unknown. Here we report the identification of such an intrinsic mechanism, which involves Golgi PtdIns4P-mediated regulation of adipose triglyceride lipase (ATGL)-driven lipolysis via intracellular glucose sensing. Mechanistically, depletion of intracellular glucose results in lower Golgi PtdIns4P levels, and thus reduced assembly of the E3 ligase complex CUL7FBXW8 in the Golgi apparatus. Decreased levels of the E3 ligase complex lead to reduced polyubiquitylation of ATGL in the Golgi and enhancement of ATGL-driven lipolysis. This cell-intrinsic mechanism regulates both the pool of intracellular FAs and their extracellular release to meet physiological demands during fasting and glucose deprivation. Moreover, genetic and pharmacological manipulation of the Golgi PtdIns4P-CUL7FBXW8-ATGL axis in mouse models of simple hepatic steatosis and MASH, as well as during ex vivo perfusion of a human steatotic liver graft leads to the amelioration of steatosis, suggesting that this pathway might be a promising target for metabolic dysfunction-associated steatotic liver disease and possibly MASH.


Blood Glucose , Lipolysis , Phosphatidylinositol Phosphates , Animals , Humans , Mice , Fatty Acids/metabolism , Glucose , Lipase/genetics , Lipase/metabolism , Lipolysis/genetics , Ubiquitin-Protein Ligases/metabolism
20.
Opt Express ; 32(6): 10329-10347, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38571248

Optical coherence tomography (OCT) and its extension OCT angiography (OCTA) have become essential clinical imaging modalities due to their ability to provide depth-resolved angiographic and tissue structural information non-invasively and at high resolution. Within a field of view, the anatomic detail available is sufficient to identify several structural and vascular pathologies that are clinically relevant for multiple prevalent blinding diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and vein occlusions. The main limitation in contemporary OCT devices is that this field of view is limited due to a fundamental trade-off between system resolution/sensitivity, sampling density, and imaging window dimensions. Here, we describe a swept-source OCT device that can capture up to a 12 × 23-mm field of view in a single shot and show that it can identify conventional pathologic features such as non-perfusion areas outside of conventional fields of view. We also show that our approach maintains sensitivity sufficient to visualize novel features, including choriocapillaris morphology beneath the macula and macrophage-like cells at the inner limiting membrane, both of which may have implications for disease.


Diabetic Retinopathy , Retinal Vessels , Humans , Retinal Vessels/pathology , Fluorescein Angiography , Tomography, Optical Coherence/methods , Retina
...