Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Cell Metab ; 36(2): 408-421.e5, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38325336

ABSTRACT

Statins are currently the most common cholesterol-lowering drug, but the underlying mechanism of statin-induced hyperglycemia is unclear. To investigate whether the gut microbiome and its metabolites contribute to statin-associated glucose intolerance, we recruited 30 patients with atorvastatin and 10 controls, followed up for 16 weeks, and found a decreased abundance of the genus Clostridium in feces and altered serum and fecal bile acid profiles among patients with atorvastatin therapy. Animal experiments validated that statin could induce glucose intolerance, and transplantation of Clostridium sp. and supplementation of ursodeoxycholic acid (UDCA) could ameliorate statin-induced glucose intolerance. Furthermore, oral UDCA administration in humans alleviated the glucose intolerance without impairing the lipid-lowering effect. Our study demonstrated that the statin-induced hyperglycemic effect was attributed to the Clostridium sp.-bile acids axis and provided important insights into adjuvant therapy of UDCA to lower the adverse risk of statin therapy.


Subject(s)
Glucose Intolerance , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Insulin Resistance , Microbiota , Humans , Animals , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Glucagon-Like Peptide 1 , Glucose Intolerance/drug therapy , Bile Acids and Salts , Ursodeoxycholic Acid/pharmacology , Ursodeoxycholic Acid/therapeutic use
2.
Food Funct ; 15(3): 1460-1475, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38226659

ABSTRACT

Parkinson's disease (PD), a neurodegenerative disease, is the leading cause of movement disorders. Neuroinflammation plays a critical role in PD pathogenesis. Neohesperidin (Neo), a natural flavonoid extracted from citric fruits exhibits anti-inflammatory effects. However, the effect of Neo on PD progression is unclear. This study aimed to investigate the effects of Neo on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice and its underlying mechanism. Our results indicated that Neo administration ameliorated motor impairment and neural damage in MPTP-injected mice, by inhibiting neuroinflammation and regulating gut microbial imbalance. Additionally, Neo administration reduced colonic inflammation and tissue damage. Mechanistic studies revealed that Neo suppressed the MPTP-induced inflammatory response by inhibiting excessive activation of NF-κB and MAPK pathways. In summary, the present study demonstrated that Neo administration attenuates neurodegeneration in MPTP-injected mice by inhibiting inflammatory responses and regulating the gut microbial composition. This study may provide the scientific basis for the use of Neo in the treatment of PD and other related diseases.


Subject(s)
Gastrointestinal Microbiome , Hesperidin/analogs & derivatives , Neurodegenerative Diseases , Neuroprotective Agents , Parkinson Disease , Mice , Animals , Neurodegenerative Diseases/drug therapy , Neuroinflammatory Diseases , Parkinson Disease/metabolism , Mice, Inbred C57BL , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Disease Models, Animal , Neuroprotective Agents/pharmacology
3.
Chem Biol Interact ; 384: 110726, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37741537

ABSTRACT

Neuronal apoptosis and neuroinflammation are key factors involved in the pathological changes of Parkinson's disease (PD). Sophoricoside (SOP) has shown anti-inflammatory and anti-apoptosis effects in various diseases. However, the role of SOP in PD has not been reported. In this experiment, we found that oral administration of SOP alleviated weight loss and motor symptoms in 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-injected mice. Further studies revealed that SOP inhibited inflammatory responses and neuronal apoptosis in the midbrain region of MPTP-injected mice. In vitro mechanistic study, we found that SOP exerts neuroprotective effects through a two-sided action. On the one hand, SOP inhibits Lipopolysaccharide (LPS)-induced inflammatory responses in microglia by inhibiting the Nuclear factor kappa-B(NF-κB) pathway. On the other hand, SOP inhibits 1-methyl-4-phenylpyridinium (MPP+)-induced neuronal apoptosis by regulating the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. Thus SOP is expected to be a potential therapeutic agent for PD by targeting neuroinflammation and neuronal apoptosis.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , Neuroinflammatory Diseases , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use , NF-kappa B/metabolism , 1-Methyl-4-phenylpyridinium , Administration, Oral , Mice, Inbred C57BL , Disease Models, Animal , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Microglia , Dopaminergic Neurons , Mammals/metabolism
4.
Int Immunopharmacol ; 123: 110739, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37536186

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder that occurs most frequently in middle-aged and elderly people. It is characterized by an insidious onset and a complex etiology, and no effective treatment has been developed. The primary characteristic of PD is the degenerative death of midbrain dopaminergic neurons. The excessive autophagy of neurons and hyperactivation of microglia were shown to be involved in the apoptosis of dopaminergic neurons. Limonin (LM), a type of pure natural compound present in grapefruit or citrus fruits (e. g., lemon, orange) has been reported to inhibit apoptosis and inflammation. However, its role and mechanism of action in PD are unclear. In this study, we explored the effect and mechanism of action of LM in PD. In vivo experiments revealed that LM ameliorated 6-OHDA-induced reduced motor activity and PD-related pathological damage in rats. In vitro experiments revealed that LM inhibited the 6-OHDA-induced apoptosis of PC12 cells by inhibiting the excessive autophagy of neurons. In addition, LM inhibited microglial inflammation by activating the AKT/Nrf-2/HO-1 pathway and protected neurons against microglial inflammation-mediated neurotoxicity. In conclusion, the findings of this experiment demonstrated that LM exerted neuroprotective effects by inhibiting neuronal autophagy-mediated apoptosis and microglial activation in 6-OHDA-injected rats, thus indicating that LM can serve as a candidate for PD by targeting neuroinflammation and neuronal autophagy to inhibit neuronal apoptosis.


Subject(s)
Limonins , Neuroprotective Agents , Parkinson Disease , Humans , Rats , Animals , Aged , Middle Aged , Oxidopamine/adverse effects , Oxidopamine/metabolism , Microglia , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Limonins/pharmacology , Parkinson Disease/metabolism , Neurons , Inflammation/drug therapy , Administration, Oral , Autophagy
5.
Int Immunopharmacol ; 120: 110334, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37244113

ABSTRACT

Accumulating research has indicated that inordinate activation of microglia releases inflammatory cytokines, damages neurons, and causes neuroinflammation, which eventually could lead to neurodegenerative diseases such as Parkinson's disease and Huntington's disease, etc. Notopterol (NOT) has anti-inflammatory and anti-oxidant functions in boundary tissues, but the effects of NOT on neuroinflammation have not been covered. Therefore, this study attempts to investigate the effect of NOT on neuroinflammation and the underlying mechanisms. According to the findings, NOT dramatically decreased the expression of pro-inflammatory mediators (interleukin-6 (IL-6), inducible nitric-oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), and Cyclooxygenase-2 (COX-2)) in LPS-exposed BV-2 cells. Western blot analysis revealed that NOT could promote the activation of AKT/Nrf2/HO-1 signaling pathway. Further studies have shown that anti-inflammatory property of NOT was inhibited by MK2206 (an AKT inhibitor), RA (an Nrf2 inhibitor), and SnPP IX (an HO-1 inhibitor). In addition, it was also discovered that NOT could weaken the damage of LPS to BV-2 cells and improve their survival rate. As a result, our results imply that NOT inhibits the inflammatory response of BV-2 cells through the AKT/Nrf2/HO-1 signaling axis and exerts a neuroprotective effect by inhibiting the activation of BV-2 cells.


Subject(s)
Lipopolysaccharides , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Lipopolysaccharides/pharmacology , NF-E2-Related Factor 2/metabolism , Neuroinflammatory Diseases , Signal Transduction , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Microglia , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism
6.
J Neuroinflammation ; 20(1): 86, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36991440

ABSTRACT

BACKGROUND: Previous studies have shown a close association between an altered immune system and Parkinson's disease (PD). Neuroinflammation inhibition may be an effective measure to prevent PD. Recently, numerous reports have highlighted the potential of hydroxy-carboxylic acid receptor 2 (HCA2) in inflammation-related diseases. Notably, the role of HCA2 in neurodegenerative diseases is also becoming more widely known. However, its role and exact mechanism in PD remain to be investigated. Nicotinic acid (NA) is one of the crucial ligands of HCA2, activating it. Based on such findings, this study aimed to examine the effect of HCA2 on neuroinflammation and the role of NA-activated HCA2 in PD and its underlying mechanisms. METHODS: For in vivo studies, 10-week-old male C57BL/6 and HCA2-/- mice were injected with LPS in the substantia nigra (SN) to construct a PD model. The motor behavior of mice was detected using open field, pole-climbing and rotor experiment. The damage to the mice's dopaminergic neurons was detected using immunohistochemical staining and western blotting methods. In vitro, inflammatory mediators (IL-6, TNF-α, iNOS and COX-2) and anti-inflammatory factors (Arg-1, Ym-1, CD206 and IL-10) were detected using RT-PCR, ELISA and immunofluorescence. Inflammatory pathways (AKT, PPARγ and NF-κB) were delineated by RT-PCR and western blotting. Neuronal damage was detected using CCK8, LDH, and flow cytometry assays. RESULTS: HCA2-/- increases mice susceptibility to dopaminergic neuronal injury, motor deficits, and inflammatory responses. Mechanistically, HCA2 activation in microglia promotes anti-inflammatory microglia and inhibits pro-inflammatory microglia by activating AKT/PPARγ and inhibiting NF-κB signaling pathways. Further, HCA2 activation in microglia attenuates microglial activation-mediated neuronal injury. Moreover, nicotinic acid (NA), a specific agonist of HCA2, alleviated dopaminergic neuronal injury and motor deficits in PD mice by activating HCA2 in microglia in vivo. CONCLUSIONS: Niacin receptor HCA2 modulates microglial phenotype to inhibit neurodegeneration in LPS-induced in vivo and in vitro models.


Subject(s)
Niacin , Parkinson Disease , Receptors, G-Protein-Coupled , Animals , Male , Mice , Dopaminergic Neurons , Lipopolysaccharides , Mice, Inbred C57BL , Microglia/metabolism , Neuroinflammatory Diseases , NF-kappa B/metabolism , Niacin/pharmacology , Parkinson Disease/metabolism , PPAR gamma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism
7.
Int Immunopharmacol ; 115: 109698, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36634417

ABSTRACT

Our previous study showed that α-Cyperone inhibited the inflammatory response triggered by activated microglia and protected dopaminergic neuron in in vitro cell model of Parkinson's disease (PD). It is unclear the effect of α-Cyperone in animal models of PD. In this study, our results indicated that α-Cyperone ameliorated motor dysfunction, protected dopaminergic neurons, and inhibited the reduction of dopamine and its metabolites in lipopolysaccharide (LPS)-induced PD rat model. Moreover, α-Cyperone suppressed the activation of microglia and the expression of neuroinflammatory factor (TNF-α, IL-6, IL-1ß, iNOS, COX-2 and ROS). Furthermore, the molecular mechanism research revealed that α-Cyperone inhibited neuroinflammation and oxidative stress to exert protective effect in microglia by activating Nrf2/HO-1 and suppressing NF-κB signaling pathway. Moreover, α-Cyperone upregulated the expression of antioxidant enzymes (GCLC, GCLM and NQO1) in microglia. In conclusion, our study demonstrates α-Cyperone alleviates dopaminergic neurodegeneration by inhibiting neuroinflammation and oxidative stress in LPS-induced PD rat model via activating Nrf2/HO-1 and suppressing NF-κB signaling pathway.


Subject(s)
NF-kappa B , Parkinson Disease , Rats , Animals , NF-kappa B/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Lipopolysaccharides/pharmacology , Dopaminergic Neurons , NF-E2-Related Factor 2/metabolism , Neuroinflammatory Diseases , Anti-Inflammatory Agents/pharmacology , Signal Transduction , Microglia
8.
Cells ; 11(18)2022 09 19.
Article in English | MEDLINE | ID: mdl-36139502

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease in which neuronal apoptosis and associated inflammation are involved in its pathogenesis. However, there is still no specific treatment that can stop PD progression. Isoalantolactone (IAL) plays a role in many inflammation-related diseases. However, its effect and mechanism in PD remain unclear. In this study, results showed that IAL administration ameliorated 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD-related pathological impairment and decreased motor activity in mice. Results from in vitro mechanistic studies showed that IAL regulated apoptosis-related proteins by activating the AKT/Nrf2 pathway, thereby suppressing the apoptosis of SN4741 cells induced by N-methyl-4-phenylpyridinium Iodide (MPP+). On the other hand, IAL inhibited LPS-induced release of pro-inflammatory mediators in BV2 cells by activating the AKT/Nrf2/HO-1 pathway and inhibiting the NF-κB pathway. In addition, IAL protected SN4741 from microglial activation-mediated neurotoxicity. Taken together, these results highlight the beneficial role of IAL as a novel therapy and potential PD drug due to its pharmacological profile.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Animals , Mice , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , 1-Methyl-4-phenylpyridinium , Apoptosis , Inflammation/metabolism , Inflammation Mediators/metabolism , Iodides/adverse effects , Lipopolysaccharides/adverse effects , Mice, Inbred C57BL , NF-E2-Related Factor 2 , NF-kappa B/metabolism , Parkinson Disease/metabolism , Proto-Oncogene Proteins c-akt , Pyrrolidines , Sesquiterpenes
9.
Int Immunopharmacol ; 108: 108694, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35349959

ABSTRACT

Parkinson's disease (PD) is a usual disease caused by degeneration of the central nervous system, which features the denaturation and death of dopaminergic neurons in the substantia nigra compact (SNc) of the midbrain. Neuroinflammation casts a consequential role in its pathogenesis, and the excessive activation of microglia as a major part of neuroinflammation cannot be ignored. Studies have indicated that Hordenine (HOR) functioned widely as an anti-oxidant and anti-inflammatory substance, but there are no reports on neuroinflammation effects. Therefore, this study is devoted to exploring the effect of HOR on neuroinflammation and its specific mechanism. In vivo, results revealed that HOR depressed the activation of microglia in SNc and protected dopaminergic neurons in the 6-hydroxydopamine (6-OHDA)-induced PD rat model, which terminally reduced movement disorders and weight loss. In vitro, studies have shown that HOR can inhibit inflammatory responses triggered by lipopolysaccharide (LPS) in BV-2 cells. More profound studies have discovered that the specific anti-inflammatory mechanism is intimately associated with the NF-κB and MAPK signaling pathways. All in it together, HOR acts as a significant role in preserving dopaminergic neurons by restraining neuroinflammation mediated by activation of microglia. This may provide a potential drug for Parkinson's treatment.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cell Line , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System , Microglia , NF-kappa B/metabolism , Neuroinflammatory Diseases , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , Rats , Tyramine/analogs & derivatives
10.
Front Immunol ; 12: 619761, 2021.
Article in English | MEDLINE | ID: mdl-33868235

ABSTRACT

Microglia, the main immune cells in the brain, participate in the innate immune response in the central nervous system (CNS). Studies have shown that microglia can be polarized into pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Accumulated evidence suggests that over-activated M1 microglia release pro-inflammatory mediators that damage neurons and lead to Parkinson's disease (PD). In contrast, M2 microglia release neuroprotective factors and exert the effects of neuroprotection. Camptothecin (CPT), an extract of the plant Camptotheca acuminate, has been reported to have anti-inflammation and antitumor effects. However, the effect of CPT on microglia polarization and microglia-mediated inflammation responses has not been reported. In our study we found that CPT improved motor performance of mice and reduced the loss of neurons in the substantia nigra (SN) of the midbrain in LPS-injected mice. In the mechanism study, we found that CPT inhibited M1 polarization of microglia and promotes M2 polarization via the AKT/Nrf2/HO-1 and NF-κB signals. Furthermore, CPT protected the neuroblastoma cell line SH-SY5Y and dopaminergic neuron cell line MN9D from damage mediated by microglia activation. In conclusion, our results demonstrate that CPT regulates the microglia polarization phenotype via activating AKT/Nrf2/HO-1 and inhibiting NF-κB pathways, inhibits neuro-inflammatory responses, and exerts neuroprotective effects in vivo and in vitro.


Subject(s)
Camptothecin/pharmacology , Heme Oxygenase-1/metabolism , Microglia/drug effects , Microglia/physiology , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Animals , Cytokines/metabolism , Cytotoxicity, Immunologic , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , Male , Mice
11.
Cell Mol Neurobiol ; 41(1): 115-127, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32279133

ABSTRACT

Neuroinflammation is caused by excessive activation of microglia and plays an essential role in neurodegenerative diseases. After activation, microglia produce several kinds of inflammatory mediators, trigger an excessive inflammatory response, and ultimately destroy the surrounding neurons. Therefore, agents that inhibit neuroinflammation may be potential drug candidates for neurodegenerative diseases. Evodiamine (EV) has anti-inflammatory functions in peripheral tissues. However, whether EV exerts the same function in neuroinflammation is not known. In the present study, the aim was to explore whether EV attenuates microglial overactivation and therefore suppresses the development of neuroinflammation in lipopolysaccharide (LPS)-stimulated BV-2 cells. It was found that EV effectively inhibited expression of proinflammatory mediators (cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)) via AKT/Nrf2/HO-1 activation and suppressed NF-κB p65 phosphorylation. In addition, EV could suppress LPS-induced inflammatory response and loss of dopaminergic neuron in mouse mesencephalic neuron--glia cells. Hence, these findings demonstrate that EV suppresses neuroinflammation caused by overactivated microglia via regulating the AKT/Nrf2/HO-1/NF-κB signaling axis.


Subject(s)
Heme Oxygenase-1/metabolism , Inflammation/pathology , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Quinazolines/pharmacology , Signal Transduction , Animals , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Survival/drug effects , Inflammation Mediators/metabolism , Lipopolysaccharides , Mice , Models, Biological , Neuroglia/metabolism , Neurons/metabolism , Phosphorylation/drug effects , Protein Transport/drug effects , Quinazolines/chemistry , Signal Transduction/drug effects , Tyrosine 3-Monooxygenase/metabolism , Up-Regulation/drug effects
12.
Front Pharmacol ; 12: 787771, 2021.
Article in English | MEDLINE | ID: mdl-35126128

ABSTRACT

Parkinson's disease (PD), the second primary neurodegenerative disease affecting human health, is mainly characterized by dopaminergic neuron damage in the midbrain and the clinical manifestation of movement disorders. Studies have shown that neuroinflammation plays an important role in the progression of PD. Excessively activated microglia produce several pro-inflammatory mediators, leading to damage to the surrounding neurons and finally inducing neurodegeneration. Echinocystic acid (EA) exhibits an anti-inflammatory effect in peripheral tissues. However, whether it inhibited neuroinflammation remains unclear. Therefore, the current study investigates the effect of EA on neuroinflammation and whether it can improve PD symptoms through inhibiting neuroinflammation. In our experiments, we discovered that EA inhibited the production of pro-inflammatory mediators in LPS-exposed BV2 cells. Further mechanism-related studies revealed that EA inhibited inflammation by activating PI3K/Akt and inhibiting NF-κB and MAPK signal pathways in LPS-induced BV2 cells. Research revealed that EA eases microglia-mediated neuron death in SN4741 and SHSY5Y cells. In in vivo studies, the results demonstrated that EA improves weight loss and behavioral impairment in MPTP-induced mice. Further studies have revealed that EA inhibited dopaminergic neuron damage and inflammation in the mice midbrain. In conclusion, our study demonstrated that EA inhibits neuroinflammation and exerts neuroprotective effects by activating PI3K/Akt and inhibiting NF-κB and MAPK signal pathways in vivo and in vitro.

13.
Immunobiology ; 225(4): 151965, 2020 07.
Article in English | MEDLINE | ID: mdl-32747020

ABSTRACT

Numerous studies have shown that over-activation of microglia could cause neuroinflammation and release pro-inflammatory mediators, which could result in neurodegenerative diseases, like Parkinson's disease, Alzheimer's disease etc. Beta-naphthoflavone (BNF) has anti-oxidant and anti-inflammatory effects in borderline tissues, but BNF has not been reported the effect associated with neuroinflammation. Therefore, the purpose of this experiment is to inquiry the impact and mechanism of BNF on neuroinflammation. The results indicated that BNF significantly inhibited the production of pro-inflammatory mediators (inducible nitric-oxide synthase (iNOS), Cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) andinterleukin-6 (IL-6)) in LPS-exposed BV-2 cells. Analysis of western blot results found that BNF accelerated the activation of AKT/Nrf-2/HO-1 signaling pathway and suppressed NF-κB pathway activation. Further study showed that BNF inhibited activation of NF-κB pathway via promoting HO-1, and SnPP IX (a HO-1 inhibitor) could inhibit anti-inflammatory function of BNF. We also found that BNF reduced the apoptosis rate of Human neuroblastoma cells (SHSY5Y) and mouse hippocampal neuron cell line (HT22) by inhibiting release of inflammatory mediators in LPS-exposed BV2 cells. In a word, our results suggested that BNF could inhibit inflammatory response via AKT/Nrf-2/HO-1-NF-κB signaling axis in BV-2 cells and exerts neuroprotective impact via inhibiting the activation of BV2 cells.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Heme Oxygenase-1/metabolism , Lipopolysaccharides/adverse effects , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , beta-Naphthoflavone/pharmacology , Animals , Cell Line , Cytokines/metabolism , Humans , Inflammation/etiology , Inflammation/metabolism , Inflammation Mediators/metabolism , Mice , Nitric Oxide Synthase Type II/metabolism , Proto-Oncogene Proteins c-akt/metabolism
14.
Front Pharmacol ; 11: 281, 2020.
Article in English | MEDLINE | ID: mdl-32322198

ABSTRACT

α-Cyperone, extracted from Cyperus rotundus, has been reported to inhibit microglia-mediated neuroinflammation. Oxidative stress and apoptosis play crucial roles in the course of Parkinson's disease (PD). PD is a common neurodegenerative disease characterized by selective death of dopaminergic neurons. This study was designed to investigate the neuroprotective effects of α-cyperone against hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis in dopaminergic neuronal SH-SY5Y cells. Neurotoxicity was assessed by MTT assay and the measurement of lactic dehydrogenase (LDH) release. The level of reactive oxygen species (ROS) was measured by dichlorodihydrofluorescin diacetate (DCFH-DA) staining. The apoptosis of SH-SY5Y cells was evaluated by annexin-V-FITC staining. The translocation of NF-E2-related factor 2 (Nrf2) was determined by western blot and immunofluorescence staining. Western blot analysis was conducted to determine the expression level of cleaved-caspase-3, the pro-apoptotic factor Bax, and the anti-apoptotic factor, Bcl-2. The results showed that α-cyperone substantially decreased H2O2-induced death, release of LDH, and the production of ROS in SH-SY5Y cells. In addition, we found that α-cyperone attenuated H2O2-induced cellular apoptosis. Moreover, α-cyperone remarkably reduced the expression of cleaved-caspase-3 and Bax, and upregulated Bcl-2. Furthermore, α-cyperone enhanced the nuclear translocation of Nrf2. Pretreatment with brusatol (BT, an Nrf2 inhibitor) attenuated α-cyperone-mediated suppression of ROS, cleaved-caspase-3, and Bax, as well as α-cyperone-induced Bcl-2 upregulation in H2O2-treated SH-SY5Y cells. α-cyperone neuroprotection required Nrf2 activation. In conclusion, α-cyperone attenuated H2O2-induced oxidative stress and apoptosis in SH-SY5Y cells via the activation of Nrf2, suggesting the potential of this compound in the prevention and treatment of PD.

16.
Int Immunopharmacol ; 75: 105739, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31351366

ABSTRACT

Neuroinflammation, characterized by the activation of microglia, is one of the major pathologic processes of Parkinson's disease (PD). Overactivated microglia can release many pro-inflammatory cytokines, which cause an excessive inflammatory response and eventually damage dopaminergic neurons. Therefore, the inhibition of neuroinflammation that results from the overactivation of microglia may be an method for the treatment of PD. Farrerol is a 2,3-dihydro-flavonoid obtained from Rhododendron, and it possesses various biological functions, including anti-inflammatory, antibacterial and antioxidant activities. However, the effect of farrerol on neuroinflammation has not been investigated. The present study uncovered a neuroprotective role for farrerol. In vitro, farrerol markedly decreased the production of inflammatory mediators, including interleukin-6 (IL-6), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), cyclooxygenase 2 (COX-2) and induced nitric oxide synthase (iNOS), induced by lipopolysaccharide (LPS) in BV-2 cells. This anti-inflammatory effect was regulated via inhibiting NF-κB p65 and AKT phosphorylation. Furthermore, we found that farrerol alleviated microglial activation and dopaminergic neuronal death in rats with LPS-induced PD. Pretreatment with farrerol markedly improved motor deficits in rats with LPS-induced PD. Taken together, our results indicate that the neuroprotective effect of the farrerol, which prevents microglial overactivation in rats with LPS-induced PD, may provide a potential therapy for patients suffering from PD.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Chromones/therapeutic use , NF-kappa B/antagonists & inhibitors , Neuroprotective Agents/therapeutic use , Parkinsonian Disorders/drug therapy , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/pharmacology , Cell Line , Chromones/pharmacology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Dopaminergic Neurons/drug effects , Lipopolysaccharides , Microglia/drug effects , Microglia/metabolism , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Parkinsonian Disorders/etiology , Parkinsonian Disorders/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...