Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
Add more filters










Publication year range
1.
Nat Biomed Eng ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025943

ABSTRACT

Pt(II) drugs are a widely used chemotherapeutic, yet their side effects can be severe. Here we show that the radiation-induced reduction of Pt(IV) complexes to cytotoxic Pt(II) drugs is rapid, efficient and applicable in water, that it is mediated by hydrated electrons from water radiolysis and that the X-ray-induced release of Pt(II) drugs from an oxaliplatin prodrug in tumours inhibits their growth, as we show with nearly complete tumour regression in mice with subcutaneous human tumour xenografts. The combination of low-dose radiotherapy with a Pt(IV)-based antibody-trastuzumab conjugate led to the tumour-selective release of the chemotherapeutic in mice and to substantial therapeutic benefits. The radiation-induced local reduction of platinum prodrugs in the reductive tumour microenvironment may expand the utility of radiotherapy.

2.
J Phys Chem A ; 128(21): 4378-4390, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38759697

ABSTRACT

Theoretical studies on chemical reaction mechanisms have been crucial in organic chemistry. Traditionally, calculating the manually constructed molecular conformations of transition states for chemical reactions using quantum chemical calculations is the most commonly used method. However, this way is heavily dependent on individual experience and chemical intuition. In our previous study, we proposed a research paradigm that used enhanced sampling in molecular dynamics simulations to study chemical reactions. This approach can directly simulate the entire process of a chemical reaction. However, the computational speed limited the use of high-precision potential energy functions for simulations. To address this issue, we presented a scheme for training high-precision force fields for molecular modeling using a previously developed graph-neural-network-based molecular model, molecular configuration transformer. This potential energy function allowed for highly accurate simulations at a low computational cost, leading to more precise calculations of the mechanism of chemical reactions. We applied this approach to study a Claisen rearrangement reaction and a carbonyl insertion reaction catalyzed by manganese.

3.
J Chem Phys ; 160(11)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38506297

ABSTRACT

Activator protein-1 (AP-1) comprises one of the largest and most evolutionary conserved families of ubiquitous eukaryotic transcription factors that act as a pioneer factor. Diversity in DNA binding interaction of AP-1 through a conserved basic-zipper (bZIP) domain directs in-depth understanding of how AP-1 achieves its DNA binding selectivity and consequently gene regulation specificity. Here, we address the structural and dynamical aspects of the DNA target recognition process of AP-1 using microsecond-long atomistic simulations based on the structure of the human AP-1 FosB/JunD bZIP-DNA complex. Our results show the unique role of DNA shape features in selective base specific interactions, characteristic ion population, and solvation properties of DNA grooves to form the motif sequence specific AP-1-DNA complex. The TpG step at the two terminals of the AP-1 site plays an important role in the structural adjustment of DNA by modifying the helical twist in the AP-1 bound state. We addressed the role of intrinsic motion of the bZIP domain in terms of opening and closing gripper motions of DNA binding helices, in target site recognition and binding of AP-1 factors. Our observations suggest that binding to the cognate motif in DNA is mainly accompanied with the precise adjustment of closing gripper motion of DNA binding helices of the bZIP domain.


Subject(s)
DNA , Transcription Factor AP-1 , Humans , Transcription Factor AP-1/metabolism , Nucleotide Motifs , DNA/chemistry , Binding Sites , Protein Binding
4.
J Chem Phys ; 160(5)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38341710

ABSTRACT

Within the confines of a densely populated cell nucleus, chromatin undergoes intricate folding, forming loops, domains, and compartments under the governance of topological constraints and phase separation. This coordinated process inevitably introduces interference between different folding strategies. In this study, we model interphase chromatins as block copolymers with hetero-hierarchical loops within a confined system. Employing dissipative particle dynamics simulations and scaling analysis, we aim to explain how the structure and distribution of loop domains modulate the microphase separation of chromatins. Our results highlight the correlation between the microphase separation of the copolymer and the length, heterogeneity, and hierarchically nested levels of the loop domains. This correlation arises from steric repulsion intrinsic to loop domains. The steric repulsion induces variations in chain stiffness (including local orientation correlations and the persistence length), thereby influencing the degree of phase separation. Through simulations of block copolymers with distinct groups of hetero-hierarchical loop anchors, we successfully reproduce changes in phase separation across diverse cell lines, under fixed interaction parameters. These findings, in qualitative alignment with Hi-C data, suggest that the variations of loop constraints alone possess the capacity to regulate higher-order structures and the gene expressions of interphase chromatins.


Subject(s)
Cell Nucleus , Chromatin , Polymers/chemistry
5.
J Chem Theory Comput ; 20(2): 832-841, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38196086

ABSTRACT

Slab geometric systems are widely utilized in molecular simulations. However, an efficient, straightforward, and accurate method for calculating electrostatic interactions in these systems for molecular dynamics (MD) simulations is still needed. This review introduces a PME-like approach called PMC-IZ, specifically designed for slab geometric systems. Traditional approaches for long-range electrostatic interaction calculations in slab geometry typically involve Ewald summation, where the Gaussian charge density is summed within 3D unit cells and then integrated in the 2D periodic space. In the proposed approach here, the Poisson equation was solved for a single Gaussian charge density within 2Dl periodic space, followed by convolution within 3D unit cells using an effective potential as the convolution kernel for summation. The effective potential ensures that the solution within the region of interest adheres strictly to 2D periodic boundary conditions while inherently possessing 3D periodic boundary condition properties. The PMC-IZ method provides for such systems accurate treatment of electrostatic interactions, overcomes limitations associated with finite vacuum layers, and offers improved computational efficiency. We thus postulate that this method provides a valuable tool for studying electrostatic interactions in slab geometric system MD simulations. It has promising applications in various areas such as surface science, catalysis, and materials research, where accurate modeling of slab geometric electrostatic interactions is essential.

6.
Nat Nanotechnol ; 19(4): 479-484, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38049594

ABSTRACT

The permeability and selectivity of biological and artificial ion channels correlate with the specific hydration structure of single ions. However, fundamental understanding of the effect of ion-ion interaction remains elusive. Here, via non-contact atomic force microscopy measurements, we demonstrate that hydrated alkali metal cations (Na+ and K+) at charged surfaces could come into close contact with each other through partial dehydration and water rearrangement processes, forming one-dimensional chain structures. We prove that the interplay at the nanoscale between the water-ion and water-water interaction can lead to an effective ion-ion attraction overcoming the ionic Coulomb repulsion. The tendency for different ions to become closely packed follows the sequence K+ > Na+ > Li+, which is attributed to their different dehydration energies and charge densities. This work highlights the key role of water molecules in prompting close packing and concerted movement of ions at charged surfaces, which may provide new insights into the mechanism of ion transport under atomic confinement.

7.
J Chem Theory Comput ; 19(22): 8460-8471, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37947474

ABSTRACT

Data-driven predictive methods that can efficiently and accurately transform protein sequences into biologically active structures are highly valuable for scientific research and medical development. Determining an accurate folding landscape using coevolutionary information is fundamental to the success of modern protein structure prediction methods. As the state of the art, AlphaFold2 has dramatically raised the accuracy without performing explicit coevolutionary analysis. Nevertheless, its performance still shows strong dependence on available sequence homologues. Based on the interrogation on the cause of such dependence, we presented EvoGen, a meta generative model, to remedy the underperformance of AlphaFold2 for poor MSA targets. By prompting the model with calibrated or virtually generated homologue sequences, EvoGen helps AlphaFold2 fold accurately in the low-data regime and even achieve encouraging performance with single-sequence predictions. Being able to make accurate predictions with few-shot MSA not only generalizes AlphaFold2 better for orphan sequences but also democratizes its use for high-throughput applications. Besides, EvoGen combined with AlphaFold2 yields a probabilistic structure generation method that could explore alternative conformations of protein sequences, and the task-aware differentiable algorithm for sequence generation will benefit other related tasks including protein design.


Subject(s)
Algorithms , Amino Acid Sequence , Protein Conformation
8.
Chem Sci ; 14(40): 11076-11087, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37860648

ABSTRACT

Engineering efficient electrode-electrolyte interfaces for the hydrogen evolution and oxidation reactions (HOR/HER) is central to the growing hydrogen economy. Existing descriptors for HOR/HER catalysts focused on species that could directly impact the immediate micro-environment of surface-mediated reactions, such as the binding energies of adsorbates. In this work, we demonstrate that bulky organic cations, such as tetrapropyl ammonium, are able to induce a long-range structure of interfacial water molecules and enhance the HOR/HER kinetics even though they are located outside the outer Helmholtz plane. Through a combination of electrokinetic analysis, molecular dynamics and in situ spectroscopic investigations, we propose that the structure-making ability of bulky hydrophobic cations promotes the formation of hydrogen-bonded water chains connecting the electrode surface to the bulk electrolyte. In alkaline electrolytes, the HOR/HER involve the activation of interfacial water by donating or abstracting protons. The structural diffusion mechanism of protons in aqueous electrolytes enables water molecules and cations located at a distance from the electrode to influence surface-mediated reactions. The findings reported in this work highlight the prospect of leveraging the nonlocal mechanism to enhance electrocatalytic performance.

9.
Genome Res ; 33(8): 1354-1368, 2023 08.
Article in English | MEDLINE | ID: mdl-37491077

ABSTRACT

The interactome networks at the DNA, RNA, and protein levels are crucial for cellular functions, and the diverse variations of these networks are heavily involved in the establishment of different cell states. We have developed a diffusion-based method, Hi-C to geometry (CTG), to obtain reliable geometric information on the chromatin from Hi-C data. CTG produces a consistent and reproducible framework for the 3D genomic structure and provides a reliable and quantitative understanding of the alterations of genomic structures under different cellular conditions. The genomic structure yielded by CTG serves as an architectural blueprint of the dynamic gene regulatory network, based on which cell-specific correspondence between gene-gene and corresponding protein-protein physical interactions, as well as transcription correlation, is revealed. We also find that gene fusion events are significantly enriched between genes of short CTG distances and are thus close in 3D space. These findings indicate that 3D chromatin structure is at least partially correlated with downstream processes such as transcription, gene regulation, and even regulatory networking through affecting protein-protein interactions.


Subject(s)
Chromatin , Gene Regulatory Networks , Chromatin/genetics , Gene Expression Regulation , Chromosomes , DNA
10.
J Chem Inf Model ; 63(14): 4355-4363, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37386792

ABSTRACT

Virtual screening, including molecular docking, plays an essential role in drug discovery. Many traditional and machine-learning-based methods are available to fulfill the docking task. However, the traditional docking methods are normally extensively time-consuming, and their performance in blind docking remains to be improved. Although the runtime of docking based on machine learning is significantly decreased, their accuracy is still limited. In this study, we take advantage of both traditional and machine-learning-based methods and present a method, deep site and docking pose (DSDP), to improve the performance of blind docking. For traditional blind docking, the entire protein is covered by a cube, and the initial positions of ligands are randomly generated in this cube. In contrast, DSDP can predict the binding site of proteins and provide an accurate searching shape and initial positions for further conformational sampling. The sampling task of DSDP makes use of the score function and a similar but modified searching strategy of AutoDock Vina, accelerated by implementation in GPUs. We systematically compare its performance in redocking, blind docking, and virtual screening tasks with state-of-the-art methods, including AutoDock Vina, GNINA, QuickVina, SMINA, and DiffDock. In the blind docking task, DSDP reaches a 29.8% top-1 success rate (root-mean-squared deviation < 2 Å) on an unbiased and challenging test dataset with 1.2 s wall-clock computational time per system. Its performances on the DUD-E dataset and the time-split PDBBind dataset used in EquiBind, TANKBind, and DiffDock are also evaluated, presenting a 57.2 and 41.8% top-1 success rate with 0.8 and 1.0 s per system, respectively.


Subject(s)
Drug Discovery , Proteins , Molecular Docking Simulation , Proteins/chemistry , Binding Sites , Machine Learning , Ligands , Protein Binding
11.
J Chem Theory Comput ; 19(14): 4338-4350, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37358079

ABSTRACT

Molecular simulations, which simulate the motions of particles according to fundamental laws of physics, have been applied to a wide range of fields from physics and materials science to biochemistry and drug discovery. Developed for computationally intensive applications, most molecular simulation software involves significant use of hard-coded derivatives and code reuse across various programming languages. In this Review, we first align the relationship between molecular simulations and artificial intelligence (AI) and reveal the coherence between the two. We then discuss how the AI platform can create new possibilities and deliver new solutions to molecular simulations, from the perspective of algorithms, programming paradigms, and even hardware. Rather than focusing solely on increasingly complex neural network models, we introduce various concepts and techniques brought about by modern AI and explore how they can be transacted to molecular simulations. To this end, we summarized several representative applications of molecular simulations enhanced by AI, including from differentiable programming and high-throughput simulations. Finally, we look ahead to promising directions that may help address existing issues in the current framework of AI-enhanced molecular simulations.

12.
J Phys Chem B ; 127(22): 5034-5045, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37252724

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) has been widely investigated as a drug target for its crucial role in innate immunity. However, the inhibitors designed using mouse model were often shown to be ineffective for humans. This outcome indicates that the activation mechanisms of human and mouse cGAS (mcGAS) are different. The cGAS activation is achieved by dimerization via binding to DNA, the detailed mechanism of which, however, is not entirely clear. To investigate these mechanisms, molecular dynamics (MD) simulations were performed on several states of four types of cGAS, namely, the mcGAS, the wild-type and A- and C-type mutations of human cGAS (hcGAS). We find that sequence differences between hcGAS and mcGAS can directly affect the protein structure stability, especially that of the siteB domain. The sequence and structural differences also contribute to DNA-binding differences. In addition, the conformational fluctuations of cGAS are found to correlate with the regulation of catalytic capacity. More importantly, we illustrate that dimerization enhances the correlation among distant residues and significantly reinforces the allosteric signal transmission among the DNA-binding interfaces and the catalytic pocket, which facilitates rapid immune response to cytosolic DNA. We conclude that siteB domain plays a prominent role in mcGAS activation, while siteA domain is key to hcGAS activation.


Subject(s)
Molecular Dynamics Simulation , Nucleotidyltransferases , Humans , Animals , Mice , Nucleotidyltransferases/chemistry , DNA/chemistry
13.
J Chem Theory Comput ; 19(8): 2270-2281, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36971474

ABSTRACT

Time-dependent density functional theory (TDDFT) is one of the most important tools for investigating the excited states of electrons. The TDDFT calculation for spin-conserving excitation, where collinear functionals are sufficient, has obtained great success and has become routine. However, TDDFT for noncollinear and spin-flip excitations, where noncollinear functionals are needed, is less widespread and still a challenge nowadays. This challenge lies in the severe numerical instabilities that root in the second-order derivatives of commonly used noncollinear functionals. To be free from this problem radically, noncollinear functionals with numerical stable derivatives are desired, and our recently developed approach, called the multicollinear approach, provides an option. In this work, the multicollinear approach is implemented in noncollinear and spin-flip TDDFT, and prototypical tests are given.

14.
Genome Res ; 33(2): 247-260, 2023 02.
Article in English | MEDLINE | ID: mdl-36828586

ABSTRACT

Dynamic chromatin structure acts as the regulator of transcription program in crucial processes including cancer and cell development, but a unified framework for characterizing chromatin structural evolution remains to be established. Here, we performed graph inferences on Hi-C data sets and derived the chromatin contact networks. We discovered significant decreases in information transmission efficiencies in chromatin of colorectal cancer (CRC) and T-cell acute lymphoblastic leukemia (T-ALL) compared to corresponding normal controls through graph statistics. Using network embedding in the Poincaré disk, the hierarchy depths of chromatin from CRC and T-ALL patients were found to be significantly shallower compared to their normal controls. A reverse trend of change in chromatin structure was observed during early embryo development. We found tissue-specific conservation of hierarchy order in chromatin contact networks. Our findings reveal the top-down hierarchy of chromatin organization, which is significantly attenuated in cancer.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Genome , Chromatin , Cell Differentiation
15.
Comput Biol Chem ; 102: 107806, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36608615

ABSTRACT

Indoor propagation of airborne diseases is yet poorly understood. Here, we theoretically study a microscopic model based on the motions of virus particles in a respiratory microdroplet, responsible for airborne transmission of diseases, to understand their indoor propagation. The virus particles are driven by a driving force that mimics force due to gushing of air by devices like indoor air conditioning along with the gravity. A viral particle within the droplet experiences viscous drag due to the droplet medium, force due to interfacial tension at the droplet boundary, the thermal forces and mutual interaction forces with the other viral particles. We use Brownian Dynamics (BD) simulations and scaling arguments to study the motion of the droplet, given by that of the center of mass of the viral assembly. The BD simulations show that in presence of the gravity force alone, the time the droplet takes to reach the ground level, defined by the gravitational potential energy being zero, from a vertical height H,tf∼γ-0.1 dependence, where γ is the interfacial tension. In presence of the driving force of magnitude F0 and duration τ0, the horizontal propagation length, Ymax from the source increase linearly with τ0, where the slope is steeper for larger F0. Our scaling analysis explains qualitatively well the simulation observations and show long-distance transmission of airborne respiratory droplets in the indoor conditions due to F0 ∼ nano-dyne.


Subject(s)
Respiratory Aerosols and Droplets , Computer Simulation
16.
Natl Sci Rev ; 10(12): nwae010, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38239561
17.
J Phys Chem B ; 126(45): 9187-9206, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36322688

ABSTRACT

Sequence-specific recognition of transcription factor (TF) binding motifs in the target site of DNA over the vast amount of non-target DNA is of primary importance for the transcriptional regulation of gene expression by the TFs. Binding of TFs to the target site of DNA relies not only on the direct contact formation but also on the structural and conformational features of DNA. Recognition of DNA structural features or shape readout by proteins is an important factor in the context of TF-DNA interaction. Based on the atomistic molecular simulation, here we report the sequence-dependent unique structural features, solvation, and ion-binding properties of biologically relevant AT- and GC-rich human TF binding motifs in DNA. Counterion and water distribution around the motif is found to be sensitive to the motif sequence, which is accompanied with the DNA shape features. The motif sequence affects the electrostatic potential along the grooves, and cytosine methylation alters the DNA shape features. Characteristic solvation properties of TF binding motif DNA fragments infer that an ionic environment and hydration influences are essential to describe TF-DNA interactions.


Subject(s)
Molecular Dynamics Simulation , Transcription Factors , Humans , Nucleotide Motifs , Binding Sites/genetics , Transcription Factors/chemistry , Protein Binding , DNA/chemistry
18.
Curr Opin Struct Biol ; 77: 102487, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36274420

ABSTRACT

Gene expression is regulated by many factors, including transcription factors, chromatin three-dimensional topology, modifications of DNA and histone proteins, and non-coding RNAs. The execution of these complex mechanisms requires an effectively coordinated regulation system. In this review, we emphasize that the multi-scale heterogeneous DNA sequence plays a fundamental and important role for gene expression activity and usage of different means of epigenetic regulation. We illustrate here that the chromatin structure organization provides a stage for spatiotemporal regulation between different genes or gene modules and to realize their downstream functional cooperation. Such a perspective expands our understanding of the central dogma: In addition to one-dimensional sequence information, inter-gene interactions can also be transferred from DNA and RNA to protein levels.


Subject(s)
Chromatin , Epigenesis, Genetic , Chromatin/genetics , Histones/metabolism , Gene Expression Regulation , Transcription Factors/metabolism
19.
Phys Chem Chem Phys ; 24(38): 23840-23848, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36165176

ABSTRACT

Diffusion-based translocation along DNA or RNA molecules is essential for genome regulatory proteins to execute their biological functions. The reduced dimensionality of the searching process makes the proteins bind specific target sites at a "faster-than-diffusion-controlled rate". We herein report a photoresponsive slider-track diffusion system capable of self-assembly rate acceleration, which consists of (-)-camphorsulfonic acid, 4-(4'-n-octoxylphenylazo)benzenesulfonic acid, and isotactic poly(2-vinylpyridine). The protonated pyridine rings act as the footholds for anionic azo sliders to diffusively bind and slide along polycationic tracks via electrostatic interactions. Ultraviolet light triggers the trans to cis isomerization and aggregation of azo sliders, which can be monitored by multiple spectroscopic methods without labeling. The presence of vinyl polymer track increases the aggregation rate of cis azobenzene up to ∼20 times, depending on the stereoregularity of the polymer chain, the acid/base ratio and the addition of salt. This system has a feature of simplicity, monitorability, controllability, and could find applications in designing molecular machines with desired functionalities.


Subject(s)
Azo Compounds , DNA , Azo Compounds/chemistry , DNA/chemistry , Polymers/chemistry , Pyridines , RNA , Ultraviolet Rays
20.
J Phys Chem B ; 126(36): 6771-6779, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36062461

ABSTRACT

Sequence-dependent binding between DNA and proteins in chromatin is an essential part of gene expression. Linker histone H1 is an important protein in the regulation of chromatin compartmentalization and compaction, and its binding with the nucleosome is sensitive to the DNA sequence. Although the interactions of H1 and DNA have been widely investigated, the mechanism of nucleosome conformation changes induced by the DNA-sequence-dependent binding with gH1 (globular H1.0) remains largely unclear at the atomic level. In the present molecular dynamics simulations, both linker and dyad DNAs were mutated to investigate the conformational changes of the nucleosome induced by the sequence-dependent binding of gH1 based on the on-dyad binding mode. Our results indicate that gH1 is insensitive to the DNA sequence of the dyad DNA but presents an apparent preference to linker DNA with an AT-rich sequence. Moreover, this specific binding induces the entry/exit region of a nucleosome to a tight conformation and regulates the accessibility of core histones. Considering that the entry/exit region of the nucleosome is a crucial binding site for many functional proteins related to gene expression, the conformational change at this region could represent an important gene regulation signal.


Subject(s)
Histones , Nucleosomes , Base Sequence , Chromatin , DNA/chemistry , Histones/chemistry , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL