ABSTRACT
Simulation and analysis of solar cells based on the heterojunction of zinc oxide doped with aluminum (AZO) and cadmium telluride (CdTe) with the structure (Al/AZO/CdTe/NiO/Ni) using the Simulator of the capacitance of solar cells - 1 dimension (SCAPS-1D) has been presented in this paper. AZO is used as a window layer and Nickel oxide (NiO) has been introduced as a hole transport layer (HTL). Through the software, the effect of thickness, absorber (CdTe), and window (AZO) layers carrier concentration, operating temperature, and resistances (series and shunt) have been studied. Simulation results show that the solar cell performance can be greatly improved by adjusting the layer's thickness and carrier concentration, obtaining optimal values of 10 nm and 10 18 c m - 3 for the AZO layer, while for the CdTe layer they were 2 µm and 10 15 c m - 3 . The optimum series and shunt resistances are in the range of 1-3 Ω c m 2 and 1800-2200 Ω c m 2 respectively. A maximum power conversion efficiency (PCE) of 14.2% is achieved with an open circuit voltage (Voc) of 0.74 V, short circuit current density (Jsc) of 26.15 m A / c m 2 and a fill factor (FF) of 72.83%, this shows AZO potential to be considered as an interesting material to replace CdS window layer.
ABSTRACT
The effect of the deposit temperature of zinc oxide (ZnO) doped with nickel (Ni) by hot filament chemical vapor deposition (HFCVD) technique is reported in this work. The technique allows depositing ZnO:Ni in short intervals (1 min). A deposit of undoped ZnO is used as a reference sample. The reference sample was deposited at 500 °C. The ZnO:Ni samples were deposited at 500 °C, 400 °C, 350 °C, and 300 °C. The samples were studied using structural, morphological, and optical characterization techniques. The Ni incorporation to the ZnO lattice was verified by the shift of the X-ray diffraction peaks, the Raman peaks, the band gap, and the photoluminescence measurements. It was found that the deposit temperature affects the structural, morphological, and optical properties of the ZnO:Ni samples too. The structure of the ZnO:Ni samples corresponds to the hexagonal structure. Different microstructures shapes such as spheres, sea urchins, and agglomerate were found in samples; their change is attributed to the deposit temperature variation. The intensity of the photoluminescence of the ZnO:Ni improves concerning the ZnO due to the Ni incorporation, but it decreases as the deposit temperature decreases.
ABSTRACT
MIS-type structures composed of silicon-rich oxide (SRO), thin films deposited by hot filament chemical vapor deposition (HFCVD), show interesting I-V and I-t properties under white light illumination and a response as photodetectors. From electrical measurements, it was found that at a reverse bias of -4 V, the illumination current increased by up to three orders of magnitude relative to the dark current, which was about 82 nA, while the photogenerated current reached a value of 25 µA. The reported MIS structure with SRO as the dielectric layer exhibited a hopping conduction mechanism, and an ohmic conduction mechanism was found with low voltage. I-t measurements confirmed the increased photogenerated current. Furthermore, the MIS structure, characterized by current-wavelength (I-λ) measurements, exhibited a maximum responsivity value at 254 mA/W, specific detectivity (D*) at 2.21 × 1011 cm Hz1/2 W-1, and a noise equivalent power (NEP) of 49 pW at a wavelength of 535 nm. The structure exhibited good switching behavior, with rise and fall times between 120 and 150 ms, respectively. These rise and decay times explain the generation and recombination of charge carriers and the trapping and release of traps, respectively. These results make MIS-type structures useful as photodetectors in the 420 to 590 nm range.
Subject(s)
Gases , Silicon , Hot Temperature , Silicon/chemistry , Silicon DioxideABSTRACT
In the present work, we developed hybrid nanostructures based on ZnO films deposited on macroporous silicon substrates using the sol-gel spin coating and ultrasonic spray pyrolysis (USP) techniques. The changes in the growth of ZnO films on macroporous silicon were studied using a UV-visible spectrometer, an X-ray diffractometer (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). XRD analysis revealed the beneficial influence of macroporous silicon on the structural properties of ZnO films. SEM micrographs showed the growth and coverage of ZnO granular and flake-like crystals inside the pores of the substrate. The root mean square roughness (RMS) measured by AFM in the ZnO grown on the macroporous silicon substrate was up to one order of magnitude higher than reference samples. These results prove that the methods used in this work are effective to cover porous and obtain nano-morphologies of ZnO. These morphologies could be useful for making highly sensitive gas sensors.
ABSTRACT
We studied the influences of the thickness of the porous silicon layer and the conductivity type on the porous silicon sensors response when exposed to ethanol vapor. The response was determined at room temperature (27 ∘C) in darkness using a horizontal aluminum electrode pattern. The results indicated that the intensity of the response can be directly or inversely proportional to the thickness of the porous layer depending on the conductivity type of the semiconductor material. The response of the porous sensors was similar to the metal oxide sensors. The results can be used to appropriately select the conductivity of semiconductor materials and the thickness of the porous layer for the target gas.
ABSTRACT
In the present work, non-stoichiometric silicon oxide films (SiOx) deposited using a hot filament chemical vapor deposition technique at short time and simple parameters of depositions are reported. This is motivated by the numerous potential applications of SiOx films in areas such as optoelectronics. SiOx films were characterized with different spectroscopic techniques. The deposited films have interesting characteristics such as the presence of silicon nanoclusters without applying thermal annealing, in addition to a strong photoluminescence after applying thermal annealing in the vicinity of 1.5 eV, which may be attributed to the presence of small, oxidized silicon grains (less than 2 nm) or silicon nanocrystals (Si-nc). An interesting correlation was found between oxygen content, the presence of hydrogen, and the formation of defects in the material, with parameters such as the band gap and the Urbach energies. This correlation is interesting in the development of band gap engineering for this material for applications in photonic devices.
ABSTRACT
In this work, non-stoichiometric silicon oxide (SiO x ) films and (SiO x /SiO y ) junctions, as-grown and after further annealing, are characterized by different techniques. The SiO x films and (SiO x /SiO y ) junctions are obtained by hot filament chemical vapor deposition technique in the range of temperatures from 900°C to 1,150°C. Transmittance spectra of the SiO x films showed a wavelength shift of the absorption edge thus indicating an increase in the optical energy band gap, when the growth temperature decreases; a similar behavior is observed in the (SiO x /SiO y ) structures, which in turn indicates a decrease in the Si excess, as Fourier transform infrared spectroscopy (FTIR) reveals, so that, the film and junction composition changes with the growth temperature. The analysis of the photoluminescence (PL) results using the quantum confinement model suggests the presence of silicon nanocrystal (Si-nc) embedded in a SiO x matrix. For the case of the as-grown SiO x films, the absorption and emission properties are correlated with quantum effects in Si-nc and defects. For the case of the as-grown (SiO x /SiO y ) junctions, only the emission mechanism related to some kinds of defects was considered, but silicon nanocrystal embedded in a SiO x matrix is present. After thermal annealing, a phase separation into Si and SiO2 occurs, as the FTIR spectra illustrates, which has repercussions in the absorption and emission properties of the films and junctions, as shown by the change in the A and B band positions on the PL spectra. These results lead to good possibilities for proposed novel applications in optoelectronic devices. PACS: 61.05.-a; 68.37.Og; 61.05.cp; 78.55.-m; 68.37.Ps; 81.15.Gh.