Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters











Publication year range
1.
Chemistry ; 30(10): e202302940, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38078547

ABSTRACT

Aggregation-Induced Emission (AIE) luminogens have garnered significant interest due to their distinctive applications in different applications. Among the diverse molecular architectures, those based on triphenylamine and thiophene hold prominence. However, a comprehensive understanding of the deactivation mechanism both in solution and films remains lacking. In this study, we synthesized and characterized spectroscopically two AIE luminogens: 5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophene-2-carbaldehyde (TTY) and 5'-(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2'-bithiophene]-5-carbaldehyde (TTO). Photophysical and theoretical analyses were conducted in both solution and PMMA films to understand the deactivation mechanism of TTY and TTO. In diluted solutions, the emission behavior of TTY and TTO is influenced by the solvent, and the deactivation of the excited state can occur via locally excited (LE) or twisted intramolecular charge transfer (TICT) state. In PMMA films, rotational and translational movements are constrained, necessitating emission solely from the LE state. Nevertheless, in the PMMA film, excimers-like structures form, resulting in the emergence of a longer wavelength band and a reduction in emission intensity. The zenith of emission intensity occurs when molecules are dispersed at higher concentrations within PMMA, effectively diminishing the likelihood of excimer-like formations. Luminescent Solar Concentrators (LSC) were fabricated to validate these findings, and the optical efficiency was studied at varying concentrations of luminogen and PMMA.

2.
Antioxidants (Basel) ; 12(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36829773

ABSTRACT

Protein aggregation, mitochondrial dysfunction, iron dyshomeostasis, increased oxidative damage and inflammation are pathognomonic features of Parkinson's disease (PD) and other neurodegenerative disorders characterized by abnormal iron accumulation. Moreover, the existence of positive feed-back loops between these pathological components, which accelerate, and sometimes make irreversible, the neurodegenerative process, is apparent. At present, the available treatments for PD aim to relieve the symptoms, thus improving quality of life, but no treatments to stop the progression of the disease are available. Recently, the use of multifunctional compounds with the capacity to attack several of the key components of neurodegenerative processes has been proposed as a strategy to slow down the progression of neurodegenerative processes. For the treatment of PD specifically, the necessary properties of new-generation drugs should include mitochondrial destination, the center of iron-reactive oxygen species interaction, iron chelation capacity to decrease iron-mediated oxidative damage, the capacity to quench free radicals to decrease the risk of ferroptotic neuronal death, the capacity to disrupt α-synuclein aggregates and the capacity to decrease inflammatory conditions. Desirable additional characteristics are dopaminergic neurons to lessen unwanted secondary effects during long-term treatment, and the inhibition of the MAO-B and COMPT activities to increase intraneuronal dopamine content. On the basis of the published evidence, in this work, we review the molecular basis underlying the pathological events associated with PD and the clinical trials that have used single-target drugs to stop the progress of the disease. We also review the current information on multifunctional compounds that may be used for the treatment of PD and discuss the chemical characteristics that underlie their functionality. As a projection, some of these compounds or modifications could be used to treat diseases that share common pathology features with PD, such as Friedreich's ataxia, Multiple sclerosis, Huntington disease and Alzheimer's disease.

3.
Chem Biol Interact ; 372: 110357, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36693444

ABSTRACT

The antioxidant activity of nine lichen substances, including methylatrarate (1), methyl haematommate (2), lobaric acid (3), fumarprotocetraric acid (4), sphaerophorin (5), subsphaeric acid (6), diffractaic acid (7), barbatolic acid (8) and salazinic acid (9) has been determined through cyclic voltammetry. The compounds 1-4 presented slopes close to the Nernst constant of 0.059 V, indicating a 2H+/2e- relation between protons and electrons, as long as the compounds 5, 6, 7, 8, and 9 present slopes between 0.037 V and 0.032 V, indicating a 1H+/2e- relation between protons and electrons. These results show a high free radical scavenging activity by means of the release of H+, suggesting an important antioxidant capacity of these molecules. Theoretical calculations of hydrogen bond dissociation enthalpies (BDE), proton affinities (PA), and Proton Transfer (PT) mechanisms, at M06-2x/6-311+G(d,p) level complement the experimental results. Computations support that the best antioxidant activity is obtained for the molecules (3, 4, 5, 6, 7 and 8), that have a carboxylic acid group close to a phenolic hydroxyl group, through hydrogen atomic transfer (HAT) and sequential proton loss electron transfer (SPLET) mechanisms. Additional computations were performed for modelling binding affinity of the lichen substances with CYPs enzymes, mainly CYP1A2, CYP51, and CYP2C9*2 isoforms, showing strong affinity for all the compounds described in this study.


Subject(s)
Antioxidants , Lichens , Antioxidants/pharmacology , Antioxidants/chemistry , Protons , Hydrogen/chemistry , Electron Transport , Thermodynamics
4.
Nat Prod Res ; 37(1): 159-163, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34319194

ABSTRACT

For the first time, we report a green extraction of lichen substances assisted by high power ultrasounds from Hypotrachyna cirrhata using ethyl lactate. This sustainable alternative was comparable, both in isolation and detection of lichen substances, to methanol. In the metabolomic analysis, a total of 77 lichen substances were detected comprising depsides, depsidones, dibenzofurans, organic acids, and lipids. Although the UHPLC/ESI/MS profiles were similar, the antioxidant activity was higher for the ethyl lactate extract. Ethyl lactate can replace toxic organic solvents, such as methanol, in order to provide more sustainable green chemistry methods.


Subject(s)
Lichens , Lichens/chemistry , Methanol/chemistry , Solvents , Antioxidants/chemistry , Plant Extracts/chemistry
5.
Nat Prod Res ; 37(12): 2076-2082, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36008873

ABSTRACT

In this study, isolation and purification of lichen substances from Usnea cornuta were performed using conventional solvents, green solvents and green technologies. In addition, several lichen compounds were tentatively identified by UHPLC/ESI/MS/MS and usnic acid, diffractaic and galbinic acids were quantified as well. Limonene, ethyl lactate and methanol, were compared regarding their extraction properties and antioxidant capacities, determined by DPPH, ORAC, and FRAP assays. In the ethyl lactate, methanol and limonene extracts, 28 compounds in all, were detected for the first time by high resolution UHPLC-MS/MS fingerprinting. Untargeted metabolomics tentatively identified 14 compounds from the methanolic extract, 4 from limonene extract, and 20 metabolites from ethyl lactate extract. The green extract of ethyl lactate showed a similar antioxidant capacity to toxic methanol extract, except at ORAC assay where it was higher. Therefore, ethyl lactate can replace methanol, to provide more sustainable green chemistry methods.


Subject(s)
Lichens , Usnea , Antioxidants/chemistry , Lichens/chemistry , Methanol/chemistry , Tandem Mass Spectrometry , Limonene , Plant Extracts/chemistry , Solvents/chemistry , Metabolomics , Usnea/chemistry
6.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36015134

ABSTRACT

The rapid emergence and spread of new variants of coronavirus type 2, as well as the emergence of zoonotic viruses, highlights the need for methodologies that contribute to the search for new pharmacological treatments. In the present work, we searched for new SARS-CoV-2 papain-like protease inhibitors in the PubChem database, which has more than 100 million compounds. Based on the ligand efficacy index obtained by molecular docking, 500 compounds with higher affinity than another experimentally tested inhibitor were selected. Finally, the seven compounds with ADME parameters within the acceptable range for such a drug were selected. Next, molecular dynamics simulation studies at 200 ns, ΔG calculations using molecular mechanics with generalized Born and surface solvation, and quantum mechanical calculations were performed with the selected compounds. Using this in silico protocol, seven papain-like protease inhibitors are proposed: three compounds with similar free energy (D28, D04, and D59) and three compounds with higher binding free energy (D60, D99, and D06) than the experimentally tested inhibitor, plus one compound (D24) that could bind to the ubiquitin-binding region and reduce the effect on the host immune system. The proposed compounds could be used in in vitro assays, and the described protocol could be used for smart drug design.

7.
Metabolites ; 12(6)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35736493

ABSTRACT

Himantormia lugubris is a Chilean native small lichen shrub growing in the Antarctica region. In this study, the metabolite fingerprinting and the antioxidant and enzyme inhibitory potential from this species and its four major isolated compounds were investigated for the first time. Using ultra-high performance liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry analysis (UHPLC-Q-Orbitrap-MS), several metabolites were identified including specific compounds as chemotaxonomical markers, while major metabolites were quantified in this species. A good inhibition activity against cholinesterase (acetylcholinesterase (AChE) IC50: 12.38 ± 0.09 µg/mL, butyrylcholinesterase (BChE) IC50: 31.54 ± 0.20 µg/mL) and tyrosinase (22.32 ± 0.21 µg/mL) enzymes of the alcoholic extract and the main compounds (IC50: 28.82 ± 0.10 µg/mL, 36.43 ± 0.08 µg/mL, and 7.25 ± 0.18 µg/mL, respectively, for the most active phenolic atranol) was found. The extract showed a total phenolic content of 47.4 + 0.0 mg of gallic acid equivalents/g. In addition, antioxidant activity was assessed using bleaching of DPPH and ORAC (IC50: 75.3 ± 0.02 µg/mL and 32.7 ± 0.7 µmol Trolox/g lichen, respectively) and FRAP (27.8 ± 0.0 µmol Trolox equivalent/g) experiments. The findings suggest that H. lugubris is a rich source of bioactive compounds with potentiality in the prevention of neurodegenerative or noncommunicable chronic diseases.

8.
Biomed Pharmacother ; 150: 113016, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35483192

ABSTRACT

Zephyranthes carinata Herb., a specie of the Amaryllidoideae subfamily, has been reported to have inhibitory activity against acetylcholinesterase. However, scientific evidence related to their bioactive alkaloids has been lacking. Thus, this study describes the isolation of the alkaloids of this plant, and their inhibition of the enzymes acetylcholinesterase (eeAChE) and butyrylcholinesterase (eqBuChE), being galanthine the main component. Additionally, haemanthamine, hamayne, lycoramine, lycorine, tazettine, trisphaeridine and vittatine/crinine were also isolated. The results showed that galanthine has significant activity at low micromolar concentrations for eeAChE (IC50 = 1.96 µg/mL). The in-silico study allowed to establish at a molecular level the high affinity and the way galanthine interacts with the active site of the TcAChE enzyme, information that corroborates the result of the experimental IC50. However, according to molecular dynamics (MD) analysis, it is also suggested that galanthine presents a different inhibition mode that the one observed for galanthamine, by presenting interaction with peripheral anionic binding site of the enzyme, which prevents the entrance and exit of molecules from the active site. Thus, in vitro screening assays plus rapid computer development play an essential role in the search for new cholinesterase inhibitors by identifying unknown bio-interactions between bioactive compounds and biological targets.


Subject(s)
Alkaloids , Amaryllidaceae , Acetylcholinesterase/metabolism , Alkaloids/pharmacology , Amaryllidaceae/chemistry , Amaryllidaceae/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Molecular Docking Simulation
9.
Heliyon ; 8(2): e08979, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35243097

ABSTRACT

Common bean (Phaseolus vulgaris L.), soybean (Glycine max L.) and mung bean (Vigna radiata L. Wilczek) seedlings were treated with methyl jasmonate (MeJA); then, dose-response and time-course experiments were carried out. Isoflavonoid composition was evaluated by high performance liquid chromatography. As a result of MeJA induction, all leguminous plants increase the amount of isoflavonoids, at levels that depend on the concentration of the elicitor and the time after induction. However, the application of MeJA in concentrations higher than 2.22 mM showed deleterious effects on seedlings and strong decreases in the concentration of isoflavonoids. In addition, a series of compounds structurally related to MeJA, such as jasmonic acid, cis-jasmone, coronatine, and indanoyl derivatives, were evaluated as elicitors. The results show that coronatine and the indanoyl-amino acids conjugates displayed a significant elicitor effect of isoflavonoids in common bean (cvs. Cargamanto Mocho and Corpoica LAS 106) and soybean (cv. Soyica P-34) seedlings, even higher than that found with the recognized elicitors, benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (acibenzolar S-methyl) and benzo-(1,2,3) thiadiazole-7-carbothioic acid (acibenzolar acid). Leguminous plants can be treated with jasmonates and indanoyl derivatives to increase levels of bioactive isoflavonoids and consequently improve biological and functional properties and resistance against pests.

10.
Metabolites ; 12(2)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35208230

ABSTRACT

Eleven species of lichens of the genus Sticta, ten of which were collected in Colombia (S. pseudosylvatica S. luteocyphellata S. cf. andina S. cf. hypoglabra, S. cordillerana, S. cf. gyalocarpa S. leucoblepharis, S. parahumboldtii S. impressula, S. ocaniensis) and one collected in Chile (S. lineariloba), were analyzed for the first time using hyphenated liquid chromatography with high-resolution mass spectrometry. In the metabolomic analysis, a total of 189 peaks were tentatively detected; the analyses were divided in five (5) groups of compounds comprising lipids, small phenolic compounds, saturated acids, terpenes, and typical phenolic lichen compounds such as depsides, depsidones and anthraquinones. The metabolome profiles of these eleven species are important since some compounds were identified as chemical markers for the fast identification of Sticta lichens for the first time. Finally, the usefulness of chemical compounds in comparison to traditional morphological traits to the study of ancestor-descendant relationships in the genus was assessed. Chemical and morphological consensus trees were not consistent with each other and recovered different relationships between taxa.

11.
Molecules ; 25(13)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32630065

ABSTRACT

In the present work, the anthelmintic activity (AA) of ethanolic extracts obtained from Gliricidia sepium, Leucaena leucocephala, and Pithecellobium dulce was evaluated using the third-stage-larval (L3) exsheathment inhibition test (LEIT) and egg hatch test (EHT) on Haemonchus contortus. Extracts were tested at concentrations of 0.3, 0.6, 1.2, 2.5, 5.0, 10, 20, and 40 mg/mL. The larval exsheathment inhibition (LEI) results showed that G. sepium achieved the highest average inhibition of 91.2%, compared with 44.6% for P. dulce and 41.0% for L. leucocephala at a concentration of 40 mg/mL; the corresponding IC50 values were 22.4, 41.7, and 43.3 mg/mL, respectively. The rates of egg hatching inhibition (EHI) at a concentration of 5 mg/mL were 99.5% for G. sepium, 64.2% for P. dulce, and 54% for L. leucocephala; the corresponding IC50 values were 1.9 mg/mL for G. sepium, 3.9 mg/mL for P. dulce, and 4.3 mg/mL for L. leucocephala. The species extracts studied here were also analyzed by ultra-high performance liquid chromatography and Orbitrap high resolution mass spectrometry (UHPLC-Q/Orbitrap/MS/MS), resulting in the compounds' identification associated with AA. Glycosylated flavonoids and methoxyphenols were observed in all three species: fatty acids in G. sepium and P. dulce; phenylpropanoids, anthraquinone glycosides, amino acids and glycosylated phenolic acids in G. sepium; and flavonoids in L. leucocephala. Comparatively, G. sepium presented a greater diversity of compounds potentially active against the control of gastrointestinal nematodes, which was associated with the results obtained in the applied tests.


Subject(s)
Anthelmintics/pharmacology , Fabaceae/chemistry , Fabaceae/classification , Flavonoids/pharmacology , Haemonchus/growth & development , Larva/growth & development , Plant Extracts/pharmacology , Animals , Chromatography, High Pressure Liquid , Haemonchus/drug effects , In Vitro Techniques , Larva/drug effects , Tandem Mass Spectrometry
12.
Genes (Basel) ; 11(2)2020 02 18.
Article in English | MEDLINE | ID: mdl-32085461

ABSTRACT

The expression of HIGD2A is dependent on oxygen levels, glucose concentration, and cell cycle progression. This gene encodes for protein HIG2A, found in mitochondria and the nucleus, promoting cell survival in hypoxic conditions. The genomic location of HIGD2A is in chromosome 5q35.2, where several chromosomal abnormalities are related to numerous cancers. The analysis of high definition expression profiles of HIGD2A suggests a role for HIG2A in cancer biology. Accordingly, the research objective was to perform a molecular biosystem analysis of HIGD2A aiming to discover HIG2A implications in cancer biology. For this purpose, public databases such as SWISS-MODEL protein structure homology-modelling server, Catalogue of Somatic Mutations in Cancer (COSMIC), Gene Expression Omnibus (GEO), MethHC: a database of DNA methylation and gene expression in human cancer, and microRNA-target interactions database (miRTarBase) were accessed. We also evaluated, by using Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR), the expression of Higd2a gene in healthy bone marrow-liver-spleen tissues of mice after quercetin (50 mg/kg) treatment. Thus, among the structural features of HIG2A protein that may participate in HIG2A translocation to the nucleus are an importin -dependent nuclear localization signal (NLS), a motif of DNA binding residues and a probable SUMOylating residue. HIGD2A gene is not implicated in cancer via mutation. In addition, DNA methylation and mRNA expression of HIGD2A gene present significant alterations in several cancers; HIGD2A gene showed significant higher expression in Diffuse Large B-cell Lymphoma (DLBCL). Hypoxic tissues characterize the "bone marrow-liver-spleen" DLBCL type. The relative quantification, by using RT-qPCR, showed that Higd2a expression is higher in bone marrow than in the liver or spleen. In addition, it was observed that quercetin modulated the expression of Higd2a gene in mice. As an assembly factor of mitochondrial respirasomes, HIG2A might be unexpectedly involved in the change of cellular energetics happening in cancer. As a result, it is worth continuing to explore the role of HIGD2A in cancer biology.


Subject(s)
Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Quercetin/administration & dosage , Systems Biology/methods , Animals , Bone Marrow/metabolism , Cell Line, Tumor , Computer Simulation , DNA Methylation , Databases, Genetic , Humans , Liver/metabolism , Male , Mice , Mutation , Neoplasm Proteins/chemistry , Neoplasm Transplantation , Neoplasms/metabolism , Protein Transport , Quercetin/pharmacology , Spleen/metabolism , Tissue Distribution
13.
Sensors (Basel) ; 20(3)2020 Feb 08.
Article in English | MEDLINE | ID: mdl-32046240

ABSTRACT

Detection of an environmental contaminant requires the use of expensive measurement equipment, which limits the realization of in situ tests because of their high cost, their limited portability, or the extended time duration of the tests. This paper presents in detail the development of a portable low-cost spectrophotometer which, by using a specialized chemosensor, allows detection of mercuric ions (Hg2+), providing effective and accurate results. Design specifications for all the stages assembling the spectrophotometer and the elements selected to build them are presented along with the process to synthesize the chemosensor and the tests developed to validate its performance in comparison with a high-precision commercial laboratory spectrophotometer.

14.
Front Chem ; 8: 595097, 2020.
Article in English | MEDLINE | ID: mdl-33614592

ABSTRACT

The pandemic that started in Wuhan (China) in 2019 has caused a large number of deaths, and infected people around the world due to the absence of effective therapy against coronavirus 2 of the severe acute respiratory syndrome (SARS-CoV-2). Viral maturation requires the activity of the main viral protease (Mpro), so its inhibition stops the progress of the disease. To evaluate possible inhibitors, a computational model of the SARS-CoV-2 enzyme Mpro was constructed in complex with 26 synthetic ligands derived from coumarins and quinolines. Analysis of simulations of molecular dynamics and molecular docking of the models show a high affinity for the enzyme (∆E binding between -5.1 and 7.1 kcal mol-1). The six compounds with the highest affinity show K d between 6.26 × 10-6 and 17.2 × 10-6, with binding affinity between -20 and -25 kcal mol-1, with ligand efficiency less than 0.3 associated with possible inhibitory candidates. In addition to the high affinity of these compounds for SARS-CoV-2 Mpro, low toxicity is expected considering the Lipinski, Veber and Pfizer rules. Therefore, this novel study provides candidate inhibitors that would allow experimental studies which can lead to the development of new treatments for SARS-CoV-2.

15.
Front Chem ; 7: 818, 2019.
Article in English | MEDLINE | ID: mdl-31828060

ABSTRACT

It was recently shown that, when tested in cellular systems, quercetin oxidized products (Qox) have significantly better antioxidant activity than quercetin (Q) itself. The main Qox identified in the experiments are either 2,5,7,3',4'-pentahydroxy-3,4-flavandione (Fl) or its tautomer, 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (Bf). We have now performed a theoretical evaluation of different physicochemical properties using density functional theory (DFT) calculations on Q and its main Qox species. The most stable structures (for Q and Qox) were identified after a structural search on their potential energy surface. Since proton affinities (PAs) are much lower than the bond dissociation enthalpies (BDEs) of phenolic hydrogens, we consider that direct antioxidant activity in these species is mainly due to the sequential proton loss electron transfer (SPLET) mechanism. Moreover, our kinetic studies, according to transition state theory, show that Q is more favored by this mechanism. However, Qox have lower PAs than Q, suggesting that antioxidant activity by the SPLET mechanism should be a result of a balance between proclivity to transfer protons (which favors Qox) and the reaction kinetics of the conjugated base in the sequential electron transfer mechanism (which favors Q). Therefore, our results support the idea that Q is a better direct antioxidant than its oxidized derivatives due to its kinetically favored SPLET reactions. Moreover, our molecular docking calculations indicate a stabilizing interaction between either Q or Qox and the kelch-like ECH-associated protein-1 (Keap1), in the nuclear factor erythroid 2-related factor 2 (Nrf2)-binding site. This should favor the release of the Nrf2 factor, the master regulator of anti-oxidative responses, promoting the expression of the antioxidant responsive element (ARE)-dependent genes. Interestingly, the computed Keap1-metabolite interaction energy is most favored for the Bf compound, which in turn is the most stable oxidized tautomer, according to their computed energies. These results provide further support for the hypothesis that Qox species may be better indirect antioxidants than Q, reducing reactive oxygen species in animal cells by activating endogenous antioxidants.

16.
Molecules ; 24(9)2019 Apr 28.
Article in English | MEDLINE | ID: mdl-31035428

ABSTRACT

Mulinum crassifolium Phil. (Apiaceae) is an endemic shrub from Chile commonly used as infusion in traditional medicine to treat diabetes, bronchial and intestinal disorders and stomach ailments, including ulcers. From the EtOAc extract of this plant, the new mulinane-type diterpenoids 3 and 5 were isolated along with three known diterpenoids. The gastroprotective effect of the infusion of the plant was assayed to support the traditional use and a fast HPLC analysis using high resolution techniques was performed to identify the bioactive constituents. The EtOAc extract and the edible infusion showed gastroprotective effect at 100 mg/kg in the HCl/EtOH induced gastric ulcer model in mice, reducing lesions by 33% and 74%, respectively. Finally, a metabolomic profiling based on UHPLC-ESI-MS/HRMS of the edible infusion was performed and thirty-five compounds were tentatively identified including quercetin, caffeic acid, apigenine glucoside, p-coumaric acid, chlorogenic acids, and caffeoylquinic acids, which have been associated previously with gastroprotective and antiulcer properties. This scientific evidence can support the contribution of polyphenols in the gastroprotective activity of the edible infusion of this plant, and can validate at least in part, its ethnopharmacological use.


Subject(s)
Apiaceae/chemistry , Chromatography, High Pressure Liquid , Diterpenes/chemistry , Diterpenes/pharmacology , Gastrointestinal Tract/drug effects , Mass Spectrometry , Plant Extracts/chemistry , Animals , Metabolome , Metabolomics , Mice , Molecular Structure
17.
J Pharm Anal ; 9(1): 62-69, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30740259

ABSTRACT

This study presents for the first time a new composite of carbon paste (CP), single-walled carbon nanotubes (SWCNTs) and Nd2O3 (NdOX). This versatile composite (NdOX-SWCNT/CPE) was applied to the oxidation of paracetamol (PCM). The newly formed surface was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The results showed greater conductivity and a higher surface area for the composite than those of the carbon paste alone. Moreover, the anodic peak currents for PCM increased from 1.6 to 3.6 µA with CPE and NdOX-SWCNT/CPE, indicating an increase of nearly 51.0% for the anodic peak current. On the other hand, the anodic peak potentials shifted from 0.67 to 0.57 V. The detection limits were 0.05 µmol/L with NdOX-SWCNT/CPE and 0.50 µmol/L with SWCNT/CPE. The relative standard deviations (RSDs) were 1.5% (n = 7). The accuracy and interference of the methods were evaluated with a urine chemistry control spiked with known quantities of PCM, uric acid, dopamine, ascorbic acid, caffeine, acetylsalicylic acid, tartrazine, sunset yellow, allure red, rutin, morin and metal ions. Finally, the novelty and usefulness of the composite were evaluated to quantify PCM in pharmaceutical dosage forms such as tablets, powders and syrups for children.

18.
Sensors (Basel) ; 18(9)2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30181437

ABSTRACT

This work reports the development of a composite of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BP4) and chitosan (CS) described in previous reports through a new method using cyclic voltammetry with 10 cycles at a scan rate of 50.0 mV s-1. This method is different from usual methods such as casting, deposition, and constant potential, and it allows the development of an electroactive surface toward the oxidation of rutin by stripping voltammetry applied to the detection in tropical fruits such as orange, lemon, and agraz (Vaccinium meridionale Swartz), with results similar to those reported in previous studies. In addition, the surface was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and Raman spectroscopy. The limit of detection was 0.07 µmol L-1 and the relative standard deviation (RSD) of 10 measurements using the same modified electrode was 0.86%. Moreover, the stability of the sensor was studied for six days using the same modified electrode, where the variation of the signal using a known concentration of rutin (RT) was found to be less than 5.0%. The method was validated using a urine chemistry control spiked with known amounts of RT and possible interference was studied using ten substances including organic and biological compounds, metal ions, and dyes. The results obtained in this study demonstrated that this electrodeveloped composite was sensitive, selective, and stable.


Subject(s)
Carbon , Chitosan/chemistry , Electrochemical Techniques , Fruit/chemistry , Ionic Liquids/chemistry , Rutin/analysis , Electrodes , Tropical Climate
19.
J Enzyme Inhib Med Chem ; 33(1): 936-944, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29734888

ABSTRACT

UHPLC/ESI/MS identification of organic compounds is the first step in the majority of screening techniques for the characterization of biologically active metabolites in natural sources. This paper describes a method for the fast identification and characterisation of secondary metabolites in Leptocarpha rivularis DC. (Palo negro) extracts by HPLC/UV (DAD)-Mass Spectrometry (HPLC/MS). The plant is used for the treatment of several diseases since pre-hispanic Mapuche times. Thirty-seven compounds were detected in the aqueous edible extract for the first time including 4 sesquiterpenes, 10 flavonoids, 9 oxylipins, 2 organic acids, and 11 phenolic acids. In addition, phenolic content antioxidant and cholinesterase inhibitory activities were measured for the first time using the edible infusion. The total polyphenol content of the infusion was 230.76 ± 2.5 mmol GAE/kg dry weight, while the antioxidant activity was 176.51 ± 28.84; 195.28 ± 4.83; and 223.92 ± 2.95 mmol TE/kg dry weight, for the DPPH, ABTS, and FRAP assays, respectively. The cholinesterase inhibitory activity was 7.38 ± 0.03 and 5.74 ± 0.06 mmol GALAE/kg, for the inhibition of acetylcholinesterase AChE and BChE, respectively, showing that this plant is a candidate for the isolation of compounds that can be useful for the treatment of neurodegenerative diseases. Furthermore, this plant could serve also as a raw material for the production of dietary supplements, due to its content of polyphenolic compounds.


Subject(s)
Antioxidants/pharmacology , Asteraceae/chemistry , Biological Products/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Cholinesterase Inhibitors/pharmacology , Picrates/antagonists & inhibitors , Acetylcholinesterase/metabolism , Antioxidants/chemistry , Antioxidants/isolation & purification , Biological Products/chemistry , Biological Products/isolation & purification , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/pharmacology , Molecular Structure , Oxylipins/chemistry , Oxylipins/isolation & purification , Oxylipins/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship
20.
Molecules ; 23(1)2017 Dec 27.
Article in English | MEDLINE | ID: mdl-29280946

ABSTRACT

Lichens are symbiotic associations of fungi with microalgae and/or cyanobacteria, which are considered among the slowest growing organisms, with strong tolerance to adverse environmental conditions. There are about 400 genera and 1600 species of lichens and those belonging to the Usnea genus comprise about 360 of these species. Usnea lichens have been used since ancient times as dyes, cosmetics, preservatives, deodorants and folk medicines. The phytochemistry of the Usnea genus includes more than 60 compounds which belong to the following classes: depsides, depsidones, depsones, lactones, quinones, phenolics, polysaccharides, fatty acids and dibenzofurans. Due to scarce knowledge of metabolomic profiles of Usnea species (U. barbata, U. antarctica, U. rubicunda and U. subfloridana), a study based on UHPLC-ESI-OT-MS-MS was performed for a comprehensive characterization of their secondary metabolites. From the methanolic extracts of these species a total of 73 metabolites were identified for the first time using this hyphenated technique, including 34 compounds in U. barbata, 21 in U. antarctica, 38 in U. rubicunda and 37 in U. subfloridana. Besides, a total of 13 metabolites were not identified and reported so far, and could be new according to our data analysis. This study showed that this hyphenated technique is rapid, effective and accurate for phytochemical identification of lichen metabolites and the data collected could be useful for chemotaxonomic studies.


Subject(s)
Lichens/chemistry , Metabolomics/methods , Plant Extracts/analysis , Tandem Mass Spectrometry/methods , Usnea/chemistry , Usnea/metabolism , Chromatography, High Pressure Liquid/methods , Fungi , Methanol/chemistry , Phytochemicals/metabolism , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL