Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Nat Commun ; 15(1): 3918, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724524

Differences in gene-expression profiles between individual cells can give rise to distinct cell fate decisions. Yet how localisation on a micropattern impacts initial changes in mRNA, protein, and phosphoprotein abundance remains unclear. To identify the effect of cellular position on gene expression, we developed a scalable antibody and mRNA targeting sequential fluorescence in situ hybridisation (ARTseq-FISH) method capable of simultaneously profiling mRNAs, proteins, and phosphoproteins in single cells. We studied 67 (phospho-)protein and mRNA targets in individual mouse embryonic stem cells (mESCs) cultured on circular micropatterns. ARTseq-FISH reveals relative changes in both abundance and localisation of mRNAs and (phospho-)proteins during the first 48 hours of exit from pluripotency. We confirm these changes by conventional immunofluorescence and time-lapse microscopy. Chemical labelling, immunofluorescence, and single-cell time-lapse microscopy further show that cells closer to the edge of the micropattern exhibit increased proliferation compared to cells at the centre. Together these data suggest that while gene expression is still highly heterogeneous position-dependent differences in mRNA and protein levels emerge as early as 12 hours after LIF withdrawal.


In Situ Hybridization, Fluorescence , Mouse Embryonic Stem Cells , RNA, Messenger , Animals , In Situ Hybridization, Fluorescence/methods , Mice , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , Single-Cell Analysis/methods , Time-Lapse Imaging/methods , Gene Expression Profiling/methods , Cell Differentiation
2.
Bioessays ; 45(12): e2300130, 2023 12.
Article En | MEDLINE | ID: mdl-37926676

Co-expression of two or more genes at the single-cell level is usually associated with functional co-regulation. While mRNA co-expression-measured as the correlation in mRNA levels-can be influenced by both transcriptional and post-transcriptional events, transcriptional regulation is typically considered dominant. We review and connect the literature describing transcriptional and post-transcriptional regulation of co-expression. To enhance our understanding, we integrate four datasets spanning single-cell gene expression data, single-cell promoter activity data and individual transcript half-lives. Confirming expectations, we find that positive co-expression necessitates promoter coordination and similar mRNA half-lives. Surprisingly, negative co-expression is favored by differences in mRNA half-lives, contrary to initial predictions from stochastic simulations. Notably, this association manifests specifically within clusters of genes. We further observe a striking compensation between promoter coordination and mRNA half-lives, which additional stochastic simulations suggest might give rise to the observed co-expression patterns. These findings raise intriguing questions about the functional advantages conferred by this compensation between distal kinetic steps.


Gene Expression Regulation , Transcription, Genetic , Gene Expression Regulation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Kinetics , Half-Life , Promoter Regions, Genetic/genetics
3.
ACS Synth Biol ; 12(8): 2217-2225, 2023 08 18.
Article En | MEDLINE | ID: mdl-37478000

Biochemical reactions that involve small numbers of molecules are accompanied by a degree of inherent randomness that results in noisy reaction outcomes. In synthetic biology, the ability to minimize noise particularly during the reconstitution of future synthetic protocells is an outstanding challenge to secure robust and reproducible behavior. Here we show that by encapsulation of a bacterial cell-free gene expression system in water-in-oil droplets, in vitro-synthesized MazF reduces cell-free gene expression noise >2-fold. With stochastic simulations we identify that this noise minimization acts through both increased degradation and the autoregulatory feedback of MazF. Specifically, we find that the expression of MazF enhances the degradation rate of mRNA up to 18-fold in a sequence-dependent manner. This sequence specificity of MazF would allow targeted noise control, making it ideal to integrate into synthetic gene networks. Therefore, including MazF production in synthetic biology can significantly minimize gene expression noise, impacting future design principles of more complex cell-free gene circuits.


Cell Physiological Phenomena , Gene Regulatory Networks , Gene Regulatory Networks/genetics , Homeostasis , Gene Expression , Endoribonucleases/genetics
...