Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Mosq Control Assoc ; 40(2): 109-111, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38811012

ABSTRACT

Updating the mosquito fauna occurring in a specific area is crucial, given that certain species serve as vectors capable of transmitting zoonotic arboviruses. This scientific note presents the first records of mosquitoes of the tribe Orthopodomyiini in the Yucatan Peninsula. Immature mosquitoes were collected on 2 occasions inside a large tree hole in Felipe Carrillo Puerto, Quintana Roo, Mexico. Thirteen adult specimens, reared from the immatures, were obtained and identified as Orthopodomyia kummi based on external characteristics of females and males. This species has been recorded in Panama, Costa Rica, El Salvador, Guatemala, Mexico, and marginally in the United States, but its presence in the Yucatan Peninsula had gone unnoticed until now. The knowledge about mosquitoes of the genus Orthopodomyia is limited, and their epidemiological importance remains uncertain. Therefore, further studies could provide insights into the ecological and infection dynamics associated with this species.


Subject(s)
Animal Distribution , Culicidae , Animals , Mexico , Female , Male , Larva/growth & development
2.
J Med Entomol ; 61(2): 274-308, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38159084

ABSTRACT

The Yucatan Peninsula is a biogeographic province of the Neotropical region which is mostly encompassed by the 3 Mexican states of Campeche, Quintana Roo, and Yucatán. During the development of the International Joint Laboratory ELDORADO (Ecosystem, bioLogical Diversity, habitat mOdifications and Risk of emerging PAthogens and Diseases in MexicO), a French-Mexican collaboration between the IRD (Institut de Recherche pour le Développement) and UNAM (Universidad Nacional Autónoma de México) in Mérida, it became evident that many putative mosquito species names recorded in the Mexican Yucatan Peninsula were misidentifications/misinterpretations or from the uncritical repetition of incorrect literature records. To provide a stronger foundation for future studies, the mosquito fauna of the Mexican Yucatan Peninsula is here comprehensively reviewed using current knowledge of taxonomy, ecology, and distribution of species through extensive bibliographic research, and examination of newly collected specimens. As a result, 90 mosquito species classified among 16 genera and 24 subgenera are recognized to occur in the Mexican Yucatan Peninsula, including 1 new peninsula record and 3 new state records.


Subject(s)
Culicidae , Animals , Ecosystem , Mexico , Biodiversity , Ecology
3.
Trop Med Health ; 46: 35, 2018.
Article in English | MEDLINE | ID: mdl-30386168

ABSTRACT

BACKGROUND: RNA viruses commonly infect bats and rodents, including mosquito-borne flaviviruses (MBFV) that affect human and animal health. Serological evidence suggests past interactions between these two mammalian orders with dengue viruses (DENV), West Nile virus (WNV), and yellow fever virus (YFV). Although in Mexico there are reports of these viruses in both host groups, we know little about their endemic cycles or persistence in time and space. METHODS: Rodents and bats were captured at the Cuitzmala River Basin on the Pacific coast of Jalisco state, Mexico, where MBFV, such as DENV, have been reported in both humans and bats. Samples were taken during January, June, and October 2014, at locations adjacent to the river. Tissue samples were collected from both bats and rodents and serum samples from rodents only. Highly sensitive serological and molecular assays were used to search for current and past evidence of viral circulation. RESULTS: One thousand nine hundred forty-eight individuals were captured belonging to 21 bat and 14 rodent species. Seven hundred sixty-nine liver and 764 spleen samples were analysed by means of a specific molecular protocol used to detect flaviviruses. Additionally, 708 serum samples from rodents were examined in order to demonstrate previous exposure to dengue virus serotype 2 (which circulates in the region). There were no positive results with any diagnostic test. DISCUSSION: To our knowledge, this is the first survey of rodents and only the second survey of bats from the Pacific Coast of Mexico in a search for MBFV. We obtained negative results from all samples. We validated our laboratory tests with negative and positive controls. Our findings are consistent with other empirical and experimental studies in which these mammalian hosts may not replicate mosquito-borne flaviviruses or present low prevalence. CONCLUSIONS: True-negative results are essential for the construction of distribution models and are necessary to identify potential areas at risk. Negative results should not be interpreted as the local absence of MBFV in the region. On the contrary, we need to establish a long-term surveillance programme to find MBFV presence in the mosquito trophic networks, identifying the potential role of rodents and bats in viral dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...