Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Ecol ; 32(20): 5626-5644, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37712324

ABSTRACT

The Astyanax mexicanus complex includes two different morphs, a surface- and a cave-adapted ecotype, found at three mountain ranges in Northeastern Mexico: Sierra de El Abra, Sierra de Guatemala and Sierra de la Colmena (Micos). Since their discovery, multiple studies have attempted to characterize the timing and the number of events that gave rise to the evolution of these cave-adapted ecotypes. Here, using RADseq and genome-wide sequencing, we assessed the phylogenetic relationships, genetic structure and gene flow events between the cave and surface Astyanax mexicanus populations, to estimate the tempo and mode of evolution of the cave-adapted ecotypes. We also evaluated the body shape evolution across different cave lineages using geometric morphometrics to examine the role of phylogenetic signal versus environmental pressures. We found strong evidence of parallel evolution of cave-adapted ecotypes derived from two separate lineages of surface fish and hypothesize that there may be up to four independent invasions of caves from surface fish. Moreover, a strong congruence between the genetic structure and geographic distribution was observed across the cave populations, with the Sierra de Guatemala the region exhibiting most genetic drift among the cave populations analysed. Interestingly, we found no evidence of phylogenetic signal in body shape evolution, but we found support for parallel evolution in body shape across independent cave lineages, with cavefish from the Sierra de El Abra reflecting the most divergent morphology relative to surface and other cavefish populations.

2.
Zool Res ; 44(4): 761-775, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464933

ABSTRACT

Cave-adapted animals provide a unique opportunity to study the evolutionary mechanisms underlying phenotypic, metabolic, behavioral, and genetic evolution in response to cave environments. The Mexican tetra ( Astyanax mexicanus) is considered a unique model system as it shows both surface and cave-dwelling morphs. To date, at least 33 different cave populations have been identified, with phylogenetic studies suggesting an origin from at least two independent surface lineages, thereby providing a unique opportunity to study parallel evolution. In the present study, we carried out the most exhaustive phylogeographic study of A. mexicanus to date, including cave and surface localities, using two mitochondrial markers (cytochrome b (cyt b) and cytochrome c oxidase subunit I ( COI)) and nuclear rhodopsin visual pigment ( rho). Additionally, we inferred the molecular evolution of rho within the two contrasting environments (cave and surface) and across three geographic regions (Sierra de El Abra, Sierra de Guatemala, and Micos). In total, 267 individuals were sequenced for the two mitochondrial fragments and 268 individuals were sequenced for the rho visual pigment from 22 cave and 46 surface populations. Phylogeographic results based on the mitochondrial data supported the two-lineage hypothesis, except for the Pachón and Chica caves, whose introgression has been largely documented. The Sierra de El Abra region depicted the largest genetic diversity, followed by the Sierra de Guatemala region. Regarding the phylogeographic patterns of rho, we recovered exclusive haplogroups for the Sierra de El Abra (Haplogroup I) and Sierra de Guatemala regions (Haplogroup IV). Moreover, a 544 bp deletion in the rho gene was observed in the Escondido cave population from Sierra de Guatemala, reducing the protein from seven to three intramembrane domains. This change may produce a loss-of-function (LOF) but requires further investigation. Regarding nonsynonymous ( dN) and synonymous ( dS) substitution rates (omega values ω), our results revealed the prevailing influence of purifying selection upon the rho pigment for both cave and surface populations (ω<1), but relaxation at the El Abra region. Notably, in contrast to the other two regions, we observed an increase in the number of dN mutations for Sierra de El Abra. However, given that a LOF was exclusively identified in the Sierra de Guatemala region, we cannot dismiss the possibility of a pleiotropic effect on the Rho protein.


Subject(s)
Characidae , Rhodopsin , Animals , Phylogeography , Phylogeny , Rhodopsin/genetics , Characidae/genetics , Evolution, Molecular
3.
J Evol Biol ; 34(11): 1752-1766, 2021 11.
Article in English | MEDLINE | ID: mdl-34545659

ABSTRACT

Intraspecific ecological and morphological polymorphism can promote ecological speciation and the build-up of reproductive isolation. Here, we evaluate correlations among morphology, trophic ecology and genetic differentiation between two divergent morphs (elongate and deep-body) of the fish genus Astyanax in the San Juan River basin in Central America, to infer the putative evolutionary mechanism shaping this system. We collected the two morphs from three water bodies and analysed: (1) the correlation between body shape and the shape of the premaxilla, a relevant trophic morphological structure, (2) the trophic level and niche width of each morph, (3) the correspondence between trophic level and body and premaxillary shape, and (4) the genetic differentiation between morphs using mitochondrial and nuclear markers. We found a strong correlation between the body and premaxillary shape of the morphs. The elongate-body morph had a streamlined body, a premaxilla with acuter angles and a narrower ascending process, and a higher trophic level, characteristic of species with predatorial habits. By contrast, the deep-body morph had a higher body depth, a premaxilla with less acute angles and a broader trophic niche, suggesting generalist habits. Despite the strong correlation between morphological and ecological divergence, the morphs showed limited genetic differentiation, supporting the idea that morphs may be undergoing incipient ecological speciation, although alternative scenarios such as stable polymorphism or plasticity should also be considered. This study provides support for the role of ecological factors promoting diversification in both lake and stream-dwelling freshwater fish.


Subject(s)
Biological Evolution , Sympatry , Animals , Fishes , Genetic Speciation , Lakes , Polymorphism, Genetic
4.
PeerJ ; 9: e11952, 2021.
Article in English | MEDLINE | ID: mdl-34532157

ABSTRACT

The endangered Chiapas killifish Tlaloc hildebrandi is an endemic freshwater species that lives in four subbasins of the Grijalva and Usumacinta basins, and one of the most geographically restricted species of the Produndulidae family. The species was originally described as endemic to springs in the high limestone plateau in San Cristóbal de Las Casas in the Río Amarillo subbasin (upper Grijalva basin). However, it was recently recorded in the Jataté and Tzaconejá subbasins in the upper Usumacinta basin, thereby expanding its known distribution range. The discovery of these populations is relevant not only for the conservation of the species but also for a better understanding of its evolutionary history. Currently, the scarce populations of T. hildebrandi, found in only a few localities in the Grijalva and Usumacinta basins, are fragmented and living under unfavorable conditions. Here, we analyzed three mitochondrial (mt-atp8&6 and mt-nd2) and one nuclear (nuc-s7) marker in order to assess the genetic diversity and population structure of T. hildebrandi. We found that, in comparison with other endangered freshwater fish species from Mexico, T. hildebrandi showed a lower level of genetic diversity (mt-nd2: h = 0.469, π = 0.0009; mt-atp8&6: h = 0.398, π = 0.001; and nuc-S7: h = 0.433, π = 0.001). Moreover, the analyzed populations exhibited a strong genetic structure in accordance with their geographic distribution, and can be placed into three genetic clusters: (1) Amarillo plus Chenhaló in the upper Grijalva basin, (2) Jataté, and (3) Tzaconejá, both in the upper Usumacinta basin. On the basis of our results, we propose the recognition of at least three evolutionarily significant units (ESUs) for the species and the urgent implementation of ex situ and in situ conservation and management efforts that consider the genetic background of the species.

5.
J Med Entomol ; 58(6): 2206-2215, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34170326

ABSTRACT

Identification of species involved in cadaveric decomposition, such as scavenger Diptera, is a fundamental step for the use of entomological evidence in court. Identification based on morphology is widely used in forensic cases; however, taxonomic knowledge of scavenger fauna is poor for many groups and for many countries, particularly Neotropical ones. A number of studies have documented the utility of a DNA barcoding strategy to assist in the identification of poorly known and diverse groups, particularly in cases involving immature states or fragmented organisms. To provide baseline knowledge of the diversity of scavenger Diptera in the Valley of Mexico, we generated a DNA barcode collection comprised of sequences of the cytochrome c oxidase subunit 1 (COI) gene for all families sampled at a nature reserve located in this region. We collected and identified specimens on the basis of morphology and a species delimitation analysis. Our analyses of 339 individuals delineated 42 species distributed across nine families of Diptera. The richest families were Calliphoridae (9 species), Sarcophagidae (7 species), and Phoridae (6 species). We found many of the species previously recorded for the Valley of Mexico, plus 18 new records for the region. Our study highlights the utility of DNA barcoding as a first-step strategy to assess species richness of poorly studied scavenger fly taxa.


Subject(s)
Animal Distribution , Calliphoridae/classification , Diptera/classification , Sarcophagidae/classification , Animals , DNA Barcoding, Taxonomic , Electron Transport Complex IV/analysis
SELECTION OF CITATIONS
SEARCH DETAIL