Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 358: 120916, 2024 May.
Article in English | MEDLINE | ID: mdl-38642486

ABSTRACT

Crop residue management has become more challenging with intensive agricultural operations. Zero tillage and crop residue returns, along with the enhancement of in-situ residue decomposition through microbial intervention, are essential measures for preserving and enhancing soil quality. To address this problem in view of stubble burning, field experiments were conducted in rice-rice (variety Swarna) cropping systems under lowland conditions, wherein the following different residue management practices were adopted viz., conventional cultivation (CC), residue incorporation (RI @ 6 t paddy straw ha-1), residue retention (RR @6 t paddy straw ha-1), and zero tillage (ZT). In this experiment, two microbial products i.e. solid microbial consortium (SMC) at 2.0 kg ha-1) and capsule (10 numbers ha-1), were evaluated in both Rabi (dry) and Kharif (wet) seasons under different residue management practices. The results on soil microbial properties showed that application of either SMC or capsule based formulation could significantly improve the soil organic carbon (SOC) content in ZT (9.51 g/kg), followed by RI (9.36 g/kg), and RR (9.34 g/kg) as compared to CC (7.61 g/kg). There were significant differences in the soil functional properties (AcP, AkP, FDA, and DHA) with microbial interventions across all residue management practices. SOC was significantly positive correlated with cellulase (R2 = 0.64, p < 0.001), ß-glucosidase (R2 = 0.61, p < 0.001), and laccase (R2 = 0.66, p < 0.001) activity; however, the regression coefficients varied significantly with microbial intervention. Moreover, the availability of N, P, and K in soil was significantly (p < 0.05) improved under microbial treatments with either RR or RI practices. Among the different methods of residues management practices, RI with microbial intervention registered a consistent yield improvement (8.4-17.8%) compared to conventional practices with microbial intervention. The present findings prove that the application of decomposing microbial consortia for in-situ rice residue management under field conditions significantly enhances soil quality and crop yield compared to conventional practices.


Subject(s)
Agriculture , Oryza , Soil Microbiology , Soil , Oryza/growth & development , India , Soil/chemistry , Agriculture/methods , Crops, Agricultural
SELECTION OF CITATIONS
SEARCH DETAIL