Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Mamm Genome ; 35(2): 186-200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38480585

ABSTRACT

Approximately 80% of the world's cattle are raised in regions with a high risk of tick-borne diseases, resulting in significant economic losses due to parasitism by Rhipicephalus (Boophilus) microplus. However, the lack of a systemic biology approach hampers a comprehensive understanding of tick-host interactions that mediate tick resistance phenotypes. Here, we conducted a genome-wide association study (GWAS) of 2933 Braford cattle and found 340 single-nucleotide polymorphisms (SNPs) associated with tick counts. Gene expression analyses were performed on skin samples obtained from previously tick-exposed heifers with extremely high or low estimated breeding values for R. microplus counts. Evaluations were performed both before and after artificial infestation with ticks. Differentially expressed genes were found within 1-Mb windows centered at significant SNPs from GWAS. A total of 330 genes were related to the breakdown of homeostasis that was induced by larval attachment to bovine skin. Enrichment analysis pointed to a key role of proteolysis and signal transduction via JAK/STAT, NFKB and WNT/beta catenin signaling pathways. Integrative analysis on matrixEQTL revealed two cis-eQTLs and four significant SNPs in the genes peptidyl arginine deiminase type IV (PADI4) and LOC11449251. The integration of genomic data from QTL maps and transcriptome analyses has identified a set of twelve key genes that show significant associations with tick loads. These genes could be key candidates to improve the accuracy of genomic predictions for tick resistance in Braford cattle.


Subject(s)
Disease Resistance , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Rhipicephalus , Tick Infestations , Animals , Cattle , Rhipicephalus/genetics , Rhipicephalus/physiology , Tick Infestations/veterinary , Tick Infestations/genetics , Tick Infestations/parasitology , Tick Infestations/immunology , Disease Resistance/genetics , Systems Biology , Cattle Diseases/genetics , Cattle Diseases/immunology , Cattle Diseases/parasitology , Quantitative Trait Loci , Female , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology
2.
Braz J Microbiol ; 54(2): 1275-1285, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37074557

ABSTRACT

Glanders is a contagious disease of equids caused by the Gram-negative bacterium Burkholderia mallei. In Brazil, the disease is considered to be reemerging and has been expanding, with records of equids with positive serology in most of the federative units. However, there are few reports describing the genotypic detection of the agent. This study demonstrated the detection of B. mallei by species-specific PCR directly from tissues or from bacterial cultures, followed by amplicon sequencing in equids (equines, mules, and asinines) with positive serology for glanders in all five geographic regions of Brazil. The molecular evidence of B. mallei infection in serologically positive equids in this study expands the possibility of strain isolation and the conduction of epidemiological characterizations based on molecular information. The microbiological detection of B. mallei in cultures from nasal and palate swabs, even in equids without clinical manifestations, raises the possibility of environmental elimination of the agent.


Subject(s)
Burkholderia mallei , Glanders , Animals , Horses , Burkholderia mallei/genetics , Glanders/diagnosis , Glanders/epidemiology , Glanders/microbiology , Brazil/epidemiology , Polymerase Chain Reaction , Nucleic Acid Amplification Techniques
3.
Hum Vaccin Immunother ; 17(9): 2965-2968, 2021 09 02.
Article in English | MEDLINE | ID: mdl-33950776

ABSTRACT

Although COVID-19 vaccines have recently been approved for emergency use, search for new vaccines are still urgent, since the access of the countries, especially the poorest, to the vaccines, has shown to be slower than the necessary to rapidly control the pandemic. We proposed a novel platform for vaccine using recombinant receptor binding domain (rRBD) from Sars-Cov-2 spike protein and Neisseria meningitidis outer membrane vesicles (OMVs). The antigen preparation produced a humoral and cellular immune response. Taken together our findings suggest a good immunostimulatory patter in response to immunization with rRBD plus N. meningitidis OMV.


Subject(s)
COVID-19 , Meningococcal Vaccines , Vaccines , Bacterial Outer Membrane Proteins , COVID-19 Vaccines , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
4.
Article in English | LILACS, CONASS, Coleciona SUS, Sec. Est. Saúde SP, SESSP-IALPROD, Sec. Est. Saúde SP | ID: biblio-1417874

ABSTRACT

Although COVID-19 vaccines have recently been approved for emergency use, search for new vaccines are still urgent, since the access of the countries, especially the poorest, to the vaccines, has shown to be slower than the necessary to rapidly control the pandemic. We proposed a novel platform for vaccine using recombinant receptor binding domain (rRBD) from Sars-Cov-2 spike protein and Neisseria meningitidis outer membrane vesicles (OMVs). The antigen preparation produced a humoral and cellular immune response. Taken together our findings suggest a good immunostimulatory patter in response to immunization with rRBD plus N. meningitidis OMV.


Subject(s)
COVID-19 Vaccines , SARS-CoV-2 , Immunity, Cellular , Antigens , Neisseria meningitidis
5.
Vaccine ; 38(48): 7674-7682, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33082014

ABSTRACT

Outer membrane vesicles (OMVs) of Neisseria meningitidis contain important antigens to trigger an immune response against meningococci and have been studied as vaccines compounds. The immune response to a vaccine may be affected by its constitution and route of administration. Therefore, Swiss mice were immunized by different routes with OMVs of N. meningitidis B with dimethyl dioctadecyl ammonium bromide in bilayer fragments (DDA-BF) or aluminum hydroxide (AH) as adjuvants. The adjuvants and different routes were compared regarding the immune responses by ELISA, western blot, delayed type hypersensitivity (DTH) and histopathologic analysis. The antigenic preparation generated humoral and cellular immune responses. In quantitative analyzes, in general, AH was superior to DDA-BF. However, analysis such as IgG avidity index, bactericidal activity and immunoblot, revealed no important differences regarding the adjuvant or route of immunization. Regarding the parameters tested, it was not possible to define a superiority between the adjuvants and routes of immunization proposed by this study.


Subject(s)
Antibodies, Bacterial , Neisseria meningitidis , Adjuvants, Immunologic , Aluminum Hydroxide , Animals , Bacterial Outer Membrane Proteins , Immunization , Mice , Neisseria meningitidis/immunology
6.
Exp Parasitol ; 137: 66-73, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24378477

ABSTRACT

The experimental system of Taenia crassiceps cysticerci infection in BALB/c mice is considered to be the most representative model of cysticercosis. In our work, mice were sacrificed 7 and 30days after infection, and pouch fluid was collected to determine the number of accumulated cells and the concentrations of IFNγ, IL-2, IL-4, IL-6, IL-10 and nitric oxide. The injection of 50 nonbudding cysticerci into normal mouse dorsal air pouches induced a high level of IFNγ and nitric oxide production relative to the parasite load. The air pouch provides a convenient cavity that allows studying the cellular immunological aspects of the T. crassiceps parasite. The nonbudding cysticerci recovered from the air pouches contained cells that can reconstitute complete cysts in the peritoneal cavity of mice. In conclusion, these results demonstrate that the air pouch model is an alternative tool for the evaluation of the immune characteristics of T. crassiceps infection.


Subject(s)
Disease Models, Animal , Taenia/immunology , Taeniasis/immunology , Animals , Diffusion Chambers, Culture , Exudates and Transudates/cytology , Exudates and Transudates/immunology , Female , Interferon-gamma/analysis , Interleukins/analysis , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Peritoneal Cavity/parasitology
7.
Hum Vaccin Immunother ; 9(3): 572-81, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23296384

ABSTRACT

Colonization of the nasopharynx by non-pathogenic Neisseria species, including N. lactamica, has been suggested to lead to the acquisition of natural immunity against Neisseria meningitidis in young children. The aim of this study was to identify a model complex of antigens and adjuvant for immunological preparation against N. meningitidis B, based on cross reactivity with N. lactamica outer membrane vesicles (OMV) antigens and the (DDA-BF) adjuvant. Complexes of 25 µg of OMV in 0.1 mM of DDA-BF were colloidally stable, exhibiting a mean diameter and charge optimal for antigen presentation. Immunogenicity tests for these complexes were performed in mice. A single dose of OMV/DDA-BF was sufficient to induce a (DTH) response, while the same result was achieved only after two doses of OMV/alum. In addition, to achieve total IgG levels that are similar to a single immunization with OMV/DDA-BF, it was necessary to give the mice a second dose of OMV/alum. Moreover, the antibodies induced from a single immunization with OMV/DDA-BF had an intermediate avidity, but antibodies with a similar avidity were only induced by OMV/alum after two immunizations. The use of this novel cationic adjuvant for the first time with a N. lactamica OMV preparation revealed good potential for future vaccine design.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Bacterial Vaccines/immunology , Cations/administration & dosage , Neisseria lactamica/immunology , Adjuvants, Immunologic/metabolism , Animals , Antibodies, Bacterial/blood , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/isolation & purification , Cations/metabolism , Female , Immunoglobulin G/blood , Meningococcal Infections/prevention & control , Mice , Secretory Vesicles/immunology , Secretory Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL