Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(2): e0295242, 2024.
Article in English | MEDLINE | ID: mdl-38346027

ABSTRACT

The COVID-19 pandemic highlights the pressing need for constant surveillance, updating of the response plan in post-peak periods and readiness for the possibility of new waves of the pandemic. A short initial period of steady rise in the number of new cases is sometimes followed by one of exponential growth. Systematic public health surveillance of the pandemic should signal an alert in the event of change in epidemic activity within the community to inform public health policy makers of the need to control a potential outbreak. The goal of this study is to improve infectious disease surveillance by complementing standardized metrics with a new surveillance metric to overcome some of their difficulties in capturing the changing dynamics of the pandemic. At statistically-founded threshold values, the new measure will trigger alert signals giving early warning of the onset of a new pandemic wave. We define a new index, the weighted cumulative incidence index, based on the daily new-case count. We model the infection spread rate at two levels, inside and outside homes, which explains the overdispersion observed in the data. The seasonal component of real data, due to the public surveillance system, is incorporated into the statistical analysis. Probabilistic analysis enables the construction of a Control Chart for monitoring index variability and setting automatic alert thresholds for new pandemic waves. Both the new index and the control chart have been implemented with the aid of a computational tool developed in R, and used daily by the Navarre Government (Spain) for virus propagation surveillance during post-peak periods. Automated monitoring generates daily reports showing the areas whose control charts issue an alert. The new index reacts sooner to data trend changes preluding new pandemic waves, than the standard surveillance index based on the 14-day notification rate of reported COVID-19 cases per 100,000 population.


Subject(s)
COVID-19 , Pandemics , Humans , Pandemics/prevention & control , COVID-19/epidemiology , Public Health Surveillance , Disease Outbreaks/prevention & control , Records
2.
J Biomech ; 43(8): 1627-31, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20170919

ABSTRACT

The purpose of this study was to analyze exercise-induced leg fatigue during a dynamic fatiguing task by examining the shapes of power vs. time curves through the combined use of several statistical methods: B-spline smoothing, functional principal components and (supervised and unsupervised) classification. In addition, granulometric size distributions were also computed to allow for comparison of curves coming from different subjects. Twelve physically active men participated in one acute heavy-resistance exercise protocol which consisted of five sets of 10 repetition maximum leg press with 120 s of rest between sets. To obtain a smooth and accurate representation of the data, a basis of 180 B-splines was used. Functional principal component (FPC) analysis was used to find the dominant modes of variation in the curves. A multivariate cluster over the FPC scores and a k-nearest neighbor classification led to three interpretable groups corresponding to different levels of fatigue. Fatigue-induced changes in the shapes of the power curves were evident, in which curves progressively flatten and develop a second power peak. In a practical setting FPC analysis greatly reduces dimensionality and the use of granulometries allows for comparison of the curve shapes without distorting the time scale. In contrast to the present methodology, which considers each curve as a datum, classical statistical approaches using summary parameters of time series may lead to limited information about the impact of dynamic fatiguing protocols on kinematic and kinetic time-course changes in curve shapes.


Subject(s)
Leg/physiology , Models, Biological , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Physical Endurance/physiology , Adult , Computer Simulation , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL