Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 80
1.
Ann Clin Transl Neurol ; 11(6): 1590-1603, 2024 Jun.
Article En | MEDLINE | ID: mdl-38655722

OBJECTIVE: Moyamoya angiopathy (MA) is a rare cerebrovascular disorder characterized by recurrent ischemic/hemorrhagic strokes due to progressive occlusion of the intracranial carotid arteries. The lack of reliable disease severity biomarkers led us to investigate molecular features of a Caucasian cohort of MA patients. METHODS: The participants consisted of 30 MA patients and 40 controls. We measured cerebrospinal fluid (CSF) levels of angiogenic/inflammatory factors (ELISA). We then applied quantitative real-time PCR on cerebral artery specimens for expression analyses of angiogenic factors. By an immunoassay based on microfluidic technology, we examined the potential correlations between plasma protein expression and MA clinical progression. A RNA interference approach toward Ring Finger Protein 213 (RNF213) and a tube formation assay were applied in cellular model. RESULTS: We detected a statistically significant (p < 0.000001) up-regulation of Angiopoietin-2 (Ang-2) in CSF and stenotic middle cerebral arteries (RQ >2) of MA patients compared to controls. A high Ang-2 plasma concentration (p = 0.018) was associated with unfavorable outcome in a subset of MA patients. ROC curve analyses indicated Ang-2 as diagnostic CSF biomarker (>3741 pg/mL) and prognostic plasma biomarker (>1162 pg/mL), to distinguish stable-from-progressive MA. Consistently, MA cellular model showed a significant up-regulation (RQ >2) of Ang-2 in RNF213 silenced condition. INTERPRETATION: Our results pointed out Ang-2 as a reliable biomarker mirroring arterial steno-occlusion and vascular instability of MA in CSF and blood, providing a candidate factor for patient stratification. This pilot study may pave the way to the validation of a biomarker to identify progressive MA patients deserving a specific treatment path.


Angiopoietin-2 , Moyamoya Disease , Humans , Moyamoya Disease/genetics , Moyamoya Disease/cerebrospinal fluid , Moyamoya Disease/diagnosis , Angiopoietin-2/cerebrospinal fluid , Angiopoietin-2/genetics , Angiopoietin-2/blood , Male , Female , Adult , Middle Aged , Prognosis , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Ubiquitin-Protein Ligases/genetics , Young Adult , Adenosine Triphosphatases
2.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article En | MEDLINE | ID: mdl-38338838

Dysfunctions of lipid metabolism are associated with tumor progression and treatment resistance of cutaneous melanoma. BRAF/MEK inhibitor resistance is linked to alterations of melanoma lipid pathways. We evaluated whether a specific lipid pattern characterizes plasma from melanoma patients and their response to therapy. Plasma samples from patients and controls were analyzed for FASN and DHCR24 levels and lipidomic profiles. FASN and DHCR24 expression resulted in association with disease condition and related to plasma cholesterol and triglycerides in patients at different disease stages (n = 144) as compared to controls (n = 115). Untargeted lipidomics in plasma (n = 40) from advanced disease patients and controls revealed altered levels of different lipids, including fatty acid derivatives and sphingolipids. Targeted lipidomics identified higher levels of dihydroceramides, ceramides, sphingomyelins, ganglioside GM3, sphingosine, sphingosine-1-phosphate, and dihydrosphingosine, saturated and unsaturated fatty acids. When melanoma patients were stratified based on a long/short-term clinical response to kinase inhibitors, differences in plasma levels were shown for saturated fatty acids (FA 16:0, FA18:0) and oleic acid (FA18:1). Our results associated altered levels of selected lipid species in plasma of melanoma patients with a more favorable prognosis. Although obtained in a small cohort, these results pave the way to lipidomic profiling for melanoma patient stratification.


Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Fatty Acids/metabolism , Sphingolipids , Triglycerides
3.
Int J Mol Sci ; 24(19)2023 Oct 03.
Article En | MEDLINE | ID: mdl-37834297

Stroke is among the most prevalent causes of disability and is the second leading cause of death worldwide in Western countries [...].


Disabled Persons , Stroke , Humans , Stroke/therapy , Forecasting , Global Health
4.
Int J Mol Sci ; 24(16)2023 Aug 13.
Article En | MEDLINE | ID: mdl-37628924

Stroke remains a major cause of death and disability worldwide. Identifying new circulating biomarkers able to distinguish and monitor common and rare cerebrovascular diseases that lead to stroke is of great importance. Biomarkers provide complementary information that may improve diagnosis, prognosis and prediction of progression as well. Furthermore, biomarkers can contribute to filling the gap in knowledge concerning the underlying disease mechanisms by pointing out novel potential therapeutic targets for personalized medicine. If many "conventional" lipid biomarkers are already known to exert a relevant role in cerebrovascular diseases, the aim of our study is to review novel "unconventional" lipid biomarkers that have been recently identified in common and rare cerebrovascular disorders using novel, cutting-edge lipidomic approaches.


Cerebrovascular Disorders , Stroke , Humans , Lipidomics , Cerebrovascular Disorders/diagnosis , Biomarkers , Rare Diseases , Lipids
5.
Int J Mol Sci ; 24(13)2023 Jul 07.
Article En | MEDLINE | ID: mdl-37446373

Moyamoya angiopathy (MMA) is an uncommon cerebrovascular disease characterized by a progressive steno-occlusive lesion of the internal carotid artery and the compensatory development of an unstable network of collateral vessels. These vascular hallmarks are responsible for recurrent ischemic/hemorrhagic strokes. Surgical treatment represents the preferred procedure for MMA patients, and indirect revascularization may induce a spontaneous angiogenesis between the brain surface and dura mater (DM), whose function remains rather unknown. A better understanding of MMA pathogenesis is expected from the molecular characterization of DM. We performed a comprehensive, label-free, quantitative mass spectrometry-based proteomic characterization of DM. The 30 most abundant identified proteins were located in the extracellular region or exosomes and were involved in extracellular matrix organization. Gene ontology analysis revealed that most proteins were involved in binding functions and hydrolase activity. Among the 30 most abundant proteins, Filamin A is particularly relevant because considering its well-known biochemical functions and molecular features, it could be a possible second hit gene with a potential role in MMA pathogenesis. The current explorative study could pave the way for further analyses aimed at better understanding such uncommon and disabling intracranial vasculopathy.


Cerebrovascular Disorders , Moyamoya Disease , Humans , Proteome , Proteomics , Moyamoya Disease/genetics , Cerebrovascular Disorders/complications , Dura Mater
6.
Front Neurosci ; 17: 1219025, 2023.
Article En | MEDLINE | ID: mdl-37492402

Thanks to a more widespread knowledge of the disease, and improved diagnostic techniques, the clinical spectrum of cerebral amyloid angiopathy (CAA) is now broad. Sporadic CAA, hereditary CAA, CAA-related inflammation (CAA-ri) and iatrogenic CAA (iCAA) create a clinical and radiological continuum which is intriguing and only partially discovered. Despite being relatively rare, CAA-ri, an aggressive subtype of CAA with vascular inflammation, has gained growing attention also because of the therapeutic efficacy of anti-inflammatory and immunomodulating drugs. More recently, diagnostic criteria have been proposed for an unusual variant of CAA, probably related to an iatrogenic origin (iCAA), toward which there is mounting scientific interest. These atypical forms of CAA are still poorly known, and their recognition can be challenging and deserve to be pursued in specialized referral centres. The aim of this brief review is to focus current developments in the field of rare forms of CAA, its pathogenesis as well as clinical and biological features in order to increase awareness of these rare forms.

8.
Int J Mol Sci ; 24(2)2023 Jan 08.
Article En | MEDLINE | ID: mdl-36674749

Moyamoya arteriopathy (MMA) is a rare cerebrovascular disorder that causes recurrent ischemic and hemorrhagic strokes, leading young patients to severe neurological deficits. The pathogenesis of MMA is still unknown. The disease onset in a wide number of pediatric cases raises the question of the role of genetic factors in the disease's pathogenesis. In these patients, MMA's clinical course, or progression, is largely unclear. By performing a comprehensive molecular and cellular profile in the plasma and CSF, respectively, of MMA pediatric patients, our study is aimed at assessing the levels of circulating endothelial progenitor cells (cEPC) and the release of selected proteins at an early disease stage to clarify MMA pathogenesis and progression. We employed cytofluorimetric methods and immunoassays in pediatric MMA patients and matched control subjects by age and sex. We detected increased levels of cEPC in peripheral blood and an upregulation of angiogenic markers in CSF (i.e., angiopoietin-2 and VEGF-A). This finding is probably associated with deregulated angiogenesis, as stated by the moderate severity of collateral vessel network development (Suzuki III-IV). The absence of significant modulation of neurofilament light in CSF led us to rule out the presence of substantial neuronal injury in MMA children. Despite the limited cohort of pediatric patients, we found some peculiar cellular and molecular characteristics in their blood and CSF samples. Our findings may be confirmed by wider and perspective studies to identify predictive or prognostic circulating biomarkers and potential therapeutic targets for personalized care of MMA pediatric patients.


Endothelial Progenitor Cells , Hemorrhagic Stroke , Moyamoya Disease , Humans , Child , Endothelial Progenitor Cells/pathology , Moyamoya Disease/pathology
9.
Brain ; 146(7): 2913-2927, 2023 07 03.
Article En | MEDLINE | ID: mdl-36535904

Cysteine-altering missense variants (NOTCH3cys) in one of the 34 epidermal growth-factor-like repeat (EGFr) domains of the NOTCH3 protein are the cause of NOTCH3-associated small vessel disease (NOTCH3-SVD). NOTCH3-SVD is highly variable, ranging from cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) at the severe end of the spectrum to non-penetrance. The strongest known NOTCH3-SVD modifier is NOTCH3cys variant position: NOTCH3cys variants located in EGFr domains 1-6 are associated with a more severe phenotype than NOTCH3cys variants located in EGFr domains 7-34. The objective of this study was to further improve NOTCH3-SVD genotype-based risk prediction by using relative differences in NOTCH3cys variant frequencies between large CADASIL and population cohorts as a starting point. Scientific CADASIL literature, cohorts and population databases were queried for NOTCH3cys variants. For each EGFr domain, the relative difference in NOTCH3cys variant frequency (NVFOR) was calculated using genotypes of 2574 CADASIL patients and 1647 individuals from population databases. Based on NVFOR cut-off values, EGFr domains were classified as either low (LR-EGFr), medium (MR-EGFr) or high risk (HR-EGFr). The clinical relevance of this new three-tiered EGFr risk classification was cross-sectionally validated by comparing SVD imaging markers and clinical outcomes between EGFr risk categories using a genotype-phenotype data set of 434 CADASIL patients and 1003 NOTCH3cys positive community-dwelling individuals. CADASIL patients and community-dwelling individuals harboured 379 unique NOTCH3cys variants. Nine EGFr domains were classified as an HR-EGFr, which included EGFr domains 1-6, but additionally also EGFr domains 8, 11 and 26. Ten EGFr domains were classified as MR-EGFr and 11 as LR-EGFr. In the population genotype-phenotype data set, HR-EGFr individuals had the highest risk of stroke [odds ratio (OR) = 10.81, 95% confidence interval (CI): 5.46-21.37], followed by MR-EGFr individuals (OR = 1.81, 95% CI: 0.84-3.88) and LR-EGFr individuals (OR = 1 [reference]). MR-EGFr individuals had a significantly higher normalized white matter hyperintensity volume (nWMHv; P = 0.005) and peak width of skeletonized mean diffusivity (PSMD; P = 0.035) than LR-EGFr individuals. In the CADASIL genotype-phenotype data set, HR-EGFr domains 8, 11 and 26 patients had a significantly higher risk of stroke (P = 0.002), disability (P = 0.041), nWMHv (P = 1.8 × 10-8), PSMD (P = 2.6 × 10-8) and lacune volume (P = 0.006) than MR-EGFr patients. SVD imaging marker load and clinical outcomes were similar between HR-EGFr 1-6 patients and HR-EGFr 8, 11 and 26 patients. NVFOR was significantly associated with vascular NOTCH3 aggregation load (P = 0.006), but not with NOTCH3 signalling activity (P = 0.88). In conclusion, we identified three clinically distinct NOTCH3-SVD EGFr risk categories based on NFVOR cut-off values, and identified three additional HR-EGFr domains located outside of EGFr domains 1-6. This EGFr risk classification will provide an important key to individualized NOTCH3-SVD disease prediction.


CADASIL , Stroke , Humans , Receptor, Notch3/genetics , CADASIL/diagnostic imaging , CADASIL/genetics , Epidermal Growth Factor/genetics , Magnetic Resonance Imaging , Stroke/genetics , Risk Assessment , Receptors, Notch/genetics , Receptors, Notch/metabolism , Mutation/genetics
10.
Cancers (Basel) ; 14(22)2022 Nov 09.
Article En | MEDLINE | ID: mdl-36428588

Hemangioblastomas (HBs) are rare, benign tumors often related to von Hippel-Lindau disease. They represent the most frequent primary cerebellar tumors in adults. Neurosurgical procedures aim to obtain a gross-total resection of tumor nodules, avoiding intra-postoperative hemorrhage. The introduction of new intraoperative imaging techniques has considerably changed surgical strategies in neuro-oncology. We present an overview of clinical and radiological data of a mono-institutional retrospective cohort, focusing on the role of intraoperative multimodal imaging in surgical strategy. From 2015 to 2021, we identified 64 (81%) cranial (42 cerebellar, 8 supratentorial, and 14 of the brainstem) HBs and 15 (19%) spinal (4 cervical and 11 dorsal) HBs in 79 patients. Intraoperatively, indocyanine green videoangiography with FLOW800 was used in 62 cases (52 cranial and 10 spinal), intraoperative ultrasound and contrast-enhanced ultrasounds in 22 cases (18 cranial and 4 spinal HBs), and fluorescein in 10 cases (in 6 cranial and 2 spinal cases used as SF-VA). Gross total resection was achieved in 100% of the cases (53 mural nodule removal and 26 complete resections of the solid tumor). No side effects were reported following the combination of these tools. Multimodal intraoperative techniques provide valuable and reliable information to identify the tumor and its vasculature, guiding a more precise and safer resection and reducing the risk of recurrence.

11.
Front Cell Dev Biol ; 10: 927118, 2022.
Article En | MEDLINE | ID: mdl-35912092

Drug resistance limits the achievement of persistent cures for the treatment of melanoma, in spite of the efficacy of the available drugs. The aim of the present study was to explore the involvement of lipid metabolism in melanoma resistance and assess the effects of its targeting in cellular models of melanoma with acquired resistance to the BRAF-inhibitor PLX4032/Vemurafenib. Since transcriptional profiles pointed to decreased cholesterol and fatty acids synthesis in resistant cells as compared to their parental counterparts, we examined lipid composition profiles of resistant cells, studied cell growth dependence on extracellular lipids, assessed the modulation of enzymes controlling the main nodes in lipid biosynthesis, and evaluated the effects of targeting Acetyl-CoA Acetyltransferase 2 (ACAT2), the first enzyme in the cholesterol synthesis pathway, and Acyl-CoA Cholesterol Acyl Transferase (ACAT/SOAT), which catalyzes the intracellular esterification of cholesterol and the formation of cholesteryl esters. We found a different lipid composition in the resistant cells, which displayed reduced saturated fatty acids (SFA), increased monounsaturated (MUFA) and polyunsaturated (PUFA), and reduced cholesteryl esters (CE) and triglycerides (TG), along with modulated expression of enzymes regulating biosynthetic nodes of the lipid metabolism. The effect of tackling lipid metabolism pathways in resistant cells was evidenced by lipid starvation, which reduced cell growth, increased sensitivity to the BRAF-inhibitor PLX4032, and induced the expression of enzymes involved in fatty acid and cholesterol metabolism. Molecular targeting of ACAT2 or pharmacological inhibition of SOAT by avasimibe showed antiproliferative effects in melanoma cell lines and a synergistic drug interaction with PLX4032, an effect associated to increased ferroptosis. Overall, our findings reveal that lipid metabolism affects melanoma sensitivity to BRAF inhibitors and that extracellular lipid availability may influence tumor cell response to treatment, a relevant finding in the frame of personalized therapy. In addition, our results indicate new candidate targets for drug combination treatments.

12.
Transl Lung Cancer Res ; 11(7): 1315-1326, 2022 Jul.
Article En | MEDLINE | ID: mdl-35958339

Background: The secreted products of the metastasis suppressor gene KiSS1 may represent useful biomarkers in non-small cell lung cancer (NSCLC) but their levels in patients have remained poorly investigated. We previously found that forced expression of KiSS1 decreased the invasive capability of NSCLC drug-resistant cells and a pro-apoptotic role for KiSS1 has been proposed in head and neck cancer. Thus, we designed a translational investigation including a pilot study to analyze KiSS1 levels in liquid biopsies, and in vitro experiments to explore the biological relevance of KiSS1 modulation. Methods: KiSS1-derived peptide levels in liquid biopsies from 60 NSCLC patients were assayed by ELISA. Preclinical experiments were carried out using quantitative real time polymerase chain reaction (qRT-PCR), ELISA, annexin V-binding and caspase activation assays. Results: We compared KiSS1 release in 3 different matrices (serum, plasma and urine) and the highest levels were detectable in serum (range, 0-4.5 ng/mL). We observed increased levels of seric KiSS1 in NSCLC patients as compared to healthy donors. KiSS1 serum concentrations, after surgical procedure and/or adjuvant therapy. We observed differences among disease stages in urine samples. In preclinical models, KiSS1 mRNA levels were increased by short term exposure to azacytidine, enhanced KiSS1 release was induced by the combination of azacytidine and cisplatin and KiSS1-derived peptides enhanced cisplatin-induced apoptosis. KiSS1 increase was observed upon exposure neurons-enriched cultures to tumor cell conditioned medium. Conclusions: Our results showing a peculiar modulation of KiSS1 levels in liquid biopsies of NSCLC patients and a regulation of cisplatin-induced apoptosis by KiSS1-derived peptides support an involvement of KiSS1 in cell response to treatment and highlight its promising features as a potential biomarker in NSCLC.

13.
J Pers Med ; 12(8)2022 Jul 29.
Article En | MEDLINE | ID: mdl-36013193

Takotsubo cardiomyopathy (TC) is a reversible cardiomyopathy mimicking an acute coronary syndrome, usually observed in response to acute stress situations. The association between acute ischemic stroke and TC is already known, since it has been previously reported that ischemic stroke can be both a consequence and a potential cause of TC. However, the precise pathophysiological mechanism linking the two conditions is still poorly understood. The aim of our review is to expand insights regarding the genetic susceptibility and available specific biomarkers of TC and to investigate the clinical profile and outcomes of patients with TC and stroke. Since evidence and trials on TC and stroke are currently lacking, this paper aims to fill a substantial gap in the literature about the relationship between these pathologies.

14.
Int J Mol Sci ; 23(11)2022 Jun 03.
Article En | MEDLINE | ID: mdl-35682959

The aim of this Special Issue was to update readers regarding state-of-the-art research into lipid metabolism and signaling in tumors and cerebrovascular diseases [...].


Cerebrovascular Disorders , Neoplasms , Humans , Lipid Metabolism , Signal Transduction
15.
Int J Mol Sci ; 23(9)2022 Apr 19.
Article En | MEDLINE | ID: mdl-35562882

Ring Finger Protein 213 (RNF213), also known as Mysterin, is the major susceptibility factor for Moyamoya Arteriopathy (MA), a progressive cerebrovascular disorder that often leads to brain stroke in adults and children. Although several rare RNF213 polymorphisms have been reported, no major susceptibility variant has been identified to date in Caucasian patients, thus frustrating the attempts to identify putative therapeutic targets for MA treatment. For these reasons, the investigation of novel biochemical functions, substrates and unknown partners of RNF213 will help to unravel the pathogenic mechanisms of MA and will facilitate variant interpretations in a diagnostic context in the future. The aim of the present review is to discuss novel perspectives regarding emerging RNF213 roles in light of recent literature updates and dissect their relevance for understanding MA and for the design of future research studies. Since its identification, RNF213 involvement in angiogenesis and vasculogenesis has strengthened, together with its role in inflammatory signals and proliferation pathways. Most recent studies have been increasingly focused on its relevance in antimicrobial activity and lipid metabolism, highlighting new intriguing perspectives. The last area could suggest the main role of RNF213 in the proteasome pathway, thus reinforcing the hypotheses already previously formulated that depict the protein as an important regulator of the stability of client proteins involved in angiogenesis. We believe that the novel evidence reviewed here may contribute to untangling the complex and still obscure pathogenesis of MA that is reflected in the lack of therapies able to slow down or halt disease progression and severity.


Adenosine Triphosphatases , Moyamoya Disease , Adenosine Triphosphatases/metabolism , Adult , Child , Genetic Predisposition to Disease , Humans , Moyamoya Disease/pathology , Transcription Factors , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
16.
Biochem Pharmacol ; 197: 114900, 2022 03.
Article En | MEDLINE | ID: mdl-34995485

Deubiquitinases (DUBs) mediate the removal of ubiquitin from diverse proteins that participate in the regulation of cell survival, DNA damage repair, apoptosis and drug resistance. Previous studies have shown an association between activation of cell survival pathways and platinum-drug resistance in ovarian carcinoma cell lines. Among the strategies available to inhibit DUBs, curcumin derivatives appear promising, thus we hypothesized their use to enhance the efficacy of cisplatin in ovarian carcinoma preclinical models. The caffeic acid phenethyl ester (CAPE), inhibited ubiquitin-specific protease 8 (USP8), but not proteasomal DUBs in cell-free assays. When CAPE was combined with cisplatin in nine cell lines representative of various histotypes a synergistic effect was observed in TOV112D cells and in the cisplatin-resistant IGROV-1/Pt1 variant, both of endometrioid type and carrying mutant TP53. In the latter cells, persistent G1 accumulation upon combined treatment associated with p27kip1 protein levels was observed. The synergy was not dependent on apoptosis induction, and appeared to occur in cells with higher USP8 levels. In vivo antitumor activity studies supported the advantage of the combination of CAPE and cisplatin in the subcutaneous model of cisplatin-resistant IGROV-1/Pt1 ovarian carcinoma as well as CAPE activity on intraperitoneal disease. This study reveals the therapeutic potential of CAPE in cisplatin-resistant ovarian tumors as well as in tumors expressing USP8.


Antineoplastic Agents/administration & dosage , Caffeic Acids/administration & dosage , Cisplatin/administration & dosage , Endopeptidases/biosynthesis , Endosomal Sorting Complexes Required for Transport/antagonists & inhibitors , Endosomal Sorting Complexes Required for Transport/biosynthesis , Ovarian Neoplasms/enzymology , Phenylethyl Alcohol/analogs & derivatives , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/biosynthesis , Animals , Cell Line, Tumor , Drug Delivery Systems/methods , Female , Humans , Mice , Mice, Nude , Ovarian Neoplasms/drug therapy , Phenylethyl Alcohol/administration & dosage , Xenograft Model Antitumor Assays/methods
17.
Front Oncol ; 12: 1070878, 2022.
Article En | MEDLINE | ID: mdl-36698394

Objective: Peripheral nerve sheath tumors (PNST) include mainly schwannomas and neurofibromas. Surgical resection represents the mainstay of treatment but due to their pathogenesis, distinguishing between intact functional nerve and the fibers from whence the PNST arose may not always be easy to perform, constituting the most relevant risk factor in determining a worsening in neurological condition. The introduction of intraoperative tools to better visualize these tumors could help achieve a gross-total resection. In this study, we analyzed the effect of sodium fluorescein (SF) on the visualization and resection of a large cohort of PNST. Methods: Between September 2018 and December 2021, 142 consecutive patients harboring a suspected PNST underwent fluorescein-guided surgery at the Department of Neurosurgery of the Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy. All patients presented with a different degree of contrast enhancement at preoperative MRI. SF was intravenously injected after intubation at 1 mg/kg. Intraoperative fluorescein characteristics and postoperative neurological and radiological outcomes were collected, analyzed, and retrospectively compared with a historical series. Results: 142 patients were included (42 syndromic and 100 sporadic); schwannoma was the predominant histology, followed by neurofibroma (17 neurofibroma e 12 plexiform neurofibroma) and MPNST. Bright fluorescence was present in all cases of schwannomas and neurofibromas, although with a less homogeneous pattern, whereas it was significantly less evident for malignant PNST; perineurioma and hybrid nerve sheath tumors were characterized by a faint fluorescence enhancement. The surgical resection rate in the general population and even among the subgroups was about 66.7%; from the comparative analysis, we found a consistently higher rate of complete tumor removal in plexiform neurofibromas, 66% in the "fluorescent" group vs 44% in the "historical" group (p-value < 0.05). The rate of complications and mean surgical time were superimposable among the two populations. Conclusions: SF is a valuable method for safe fluorescence-guided PNST and mimicking lesions resection. Our data showed a positive effect of fluorescein-guided surgery in increasing the rate of surgical resection of plexiform neurofibromas, suggesting a possible role in improving the functional and oncological outcome of these lesions.

18.
Int J Mol Sci ; 22(24)2021 Dec 14.
Article En | MEDLINE | ID: mdl-34948203

Moyamoya arteriopathy (MA) is a rare cerebrovascular disorder characterized by ischemic/hemorrhagic strokes. The pathophysiology is unknown. A deregulation of vasculogenic/angiogenic/inflammatory pathways has been hypothesized as a possible pathophysiological mechanism. Since lipids are implicated in modulating neo-vascularization/angiogenesis and inflammation, their deregulation is potentially involved in MA. Our aim is to evaluate angiogenic/vasculogenic/inflammatory proteins and lipid profile in plasma of MA patients and control subjects (healthy donors HD or subjects with atherosclerotic cerebrovascular disease ACVD). Angiogenic and inflammatory protein levels were measured by ELISA and a complete lipidomic analysis was performed on plasma by mass spectrometry. ELISA showed a significant decrease for MMP-9 released in plasma of MA. The untargeted lipidomic analysis showed a cumulative depletion of lipid asset in plasma of MA as compared to HD. Specifically, a decrease in membrane complex glycosphingolipids peripherally circulating in MA plasma with respect to HD was observed, likely suggestive of cerebral cellular recruitment. The quantitative targeted approach demonstrated an increase in free sphingoid bases, likely associated with a deregulated angiogenesis. Our findings indicate that lipid signature could play a central role in MA and that a detailed biomarker profile may contribute to untangle the complex, and still obscure, pathogenesis of MA.


Lipids/blood , Moyamoya Disease/blood , Vascular Diseases/blood , Biomarkers/blood , Female , Humans , Inflammation/blood , Intracranial Arteriosclerosis/blood , Lipidomics/methods , Male , Middle Aged , Neovascularization, Pathologic/blood
19.
J Clin Med ; 10(16)2021 Aug 17.
Article En | MEDLINE | ID: mdl-34441923

Moyamoya angiopathy (MMA) is a peculiar cerebrovascular condition characterized by progressive steno-occlusion of the terminal part of the internal carotid arteries (ICAs) and their proximal branches, associated with the development of a network of fragile collateral vessels at the base of the brain. The diagnosis is essentially made by radiological angiographic techniques. MMA is often idiopathic (moyamoya disease-MMD); conversely, it can be associated with acquired or hereditary conditions (moyamoya Syndrome-MMS); however, the pathophysiology underlying either MMD or MMS has not been fully elucidated to date, and this poor knowledge reflects uncertainties and heterogeneity in patient management. MMD and MMS also have similar clinical expressions, including, above all, ischemic and hemorrhagic strokes, then headaches, seizures, cognitive impairment, and movement disorders. The available treatment strategies are currently shared between idiopathic MMD and MMS, including pharmacological and surgical stroke prevention treatments and symptomatic drugs. No pharmacological treatment able to reverse the progressive disappearance of the ICAs has been found to date in both idiopathic and syndromic cases. Antithrombotic agents are usually prescribed in ischemic MMA, although the coexisting hemorrhagic risk should be considered. Surgical revascularization techniques, which are currently the best available treatment in symptomatic MMA, are associated with good long-term outcomes and reduced ischemic and hemorrhagic risks. Given the lack of dedicated randomized clinical trials, current treatment is mainly based on observational studies and physicians' and surgeons' expertise.

20.
J Clin Med ; 10(11)2021 May 25.
Article En | MEDLINE | ID: mdl-34070336

Whereas several studies have been so far presented about the surgical outcomes in terms of mortality and perioperative complications for elderly patients submitted to neurosurgical treatments, the management of elderly moyamoya patients is unclear. This review aims to explore the available data about the clinical manifestation, characteristics, and outcome after surgery of older patients with moyamoya arteriopathy (MA). We found only two articles strictly concerning elderly patients with MA. We have also evaluated other reported adult series of moyamoya patients, including elderly cases in their analysis. Patients with MA above 50 years old may be considered a peculiar subset in which patients are often presenting with ischemic symptoms and a higher Suzuki grade. Conservative treatment may be proposed in asymptomatic or stable cases due to their fragility and possible increase of post-operative complications, while the best surgical options in symptomatic cases are still under investigation, although we believe that a minimal invasive superficial temporal artery-middle cerebral artery bypass could be considered the treatment of choice for the immediate effect on brain perfusion with a limited rate of post-operative complications.

...