Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Obes (Lond) ; 48(7): 964-972, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38459259

ABSTRACT

BACKGROUND/OBJECTIVES: Proinflammatory cytokines are increased in obese adipose tissue, including inflammasome key masters. Conversely, IL-18 protects against obesity and metabolic dysfunction. We focused on the IL-18 effect in controlling adipose tissue remodeling and metabolism. MATERIALS/SUBJECTS AND METHODS: We used C57BL/6 wild-type (WT) and interleukine-18 deficient (IL-18-/-) male mice fed a chow diet and samples from bariatric surgery patients. RESULTS: IL-18-/- mice showed increased adiposity and proinflammatory cytokine levels in adipose tissue, leading to glucose intolerance. IL-18 was widely secreted by stromal vascular fraction but not adipocytes from mice's fatty tissue. Chimeric model experiments indicated that IL-18 controls adipose tissue expansion through its presence in tissues other than bone marrow. However, IL-18 maintains glucose homeostasis when present in bone marrow cells. In humans with obesity, IL-18 expression in omental tissue was not correlated with BMI or body fat mass but negatively correlated with IRS1, GLUT-4, adiponectin, and PPARy expression. Also, the IL-18RAP receptor was negatively correlated with IL-18 expression. CONCLUSIONS: IL-18 signaling may control adipose tissue expansion and glucose metabolism, as its absence leads to spontaneous obesity and glucose intolerance in mice. We suggest that resistance to IL-18 signaling may be linked with worse glucose metabolism in humans with obesity.


Subject(s)
Adipose Tissue , Interleukin-18 , Mice, Inbred C57BL , Obesity , Animals , Interleukin-18/metabolism , Mice , Male , Adipose Tissue/metabolism , Humans , Obesity/metabolism , Glucose Intolerance/metabolism , Disease Models, Animal , Mice, Knockout
2.
Cell Rep Med ; 4(12): 101256, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38118422

ABSTRACT

FLT3-L-dependent classical dendritic cells (cDCs) recruit anti-tumor and tumor-protecting lymphocytes. We evaluate cancer growth in mice with low, normal, or high levels of cDCs. Paradoxically, both low or high numbers of cDCs improve survival in mice with melanoma. In low cDC context, tumors are restrained by the adaptive immune system through influx of effector T cells and depletion of Tregs and NK cells. High cDC numbers favor the innate anti-tumor response, with massive recruitment of activated NK cells, despite high Treg infiltration. Anti CTLA-4 but not anti PD-1 therapy synergizes with FLT3-L therapy in the cDCHi but not in the cDCLo context. A combination of cDC boost and Treg depletion dramatically improves survival of tumor-bearing mice. Transcriptomic data confirm the paradoxical effect of cDC levels on survival in several human tumor types. cDCHi-TregLo state in such patients predicts best survival. Modulating cDC numbers via FLT3 signaling may have therapeutic potential in human cancer.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Humans , Mice , Animals , Killer Cells, Natural , Dendritic Cells , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL