Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cells ; 13(2)2024 01 09.
Article in English | MEDLINE | ID: mdl-38247815

ABSTRACT

The COVID-19 pandemic has brought to the forefront the intricate relationship between SARS-CoV-2 and its impact on neurological complications, including potential links to neurodegenerative processes, characterized by a dysfunction of the protein quality control systems and ER stress. This review article explores the role of protein quality control systems, such as the Unfolded Protein Response (UPR), the Endoplasmic Reticulum-Associated Degradation (ERAD), the Ubiquitin-Proteasome System (UPS), autophagy and the molecular chaperones, in SARS-CoV-2 infection. Our hypothesis suggests that SARS-CoV-2 produces ER stress and exploits the protein quality control systems, leading to a disruption in proteostasis that cannot be solved by the host cell. This disruption culminates in cell death and may represent a link between SARS-CoV-2 and neurodegeneration.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/complications , Endoplasmic Reticulum-Associated Degradation , Pandemics , Ubiquitin
2.
Cancer Prev Res (Phila) ; 17(2): 59-75, 2024 02 02.
Article in English | MEDLINE | ID: mdl-37956420

ABSTRACT

Risk and outcome of acute promyelocytic leukemia (APL) are particularly worsened in obese-overweight individuals, but the underlying molecular mechanism is unknown. In established mouse APL models (Ctsg-PML::RARA), we confirmed that obesity induced by high-fat diet (HFD) enhances leukemogenesis by increasing penetrance and shortening latency, providing an ideal model to investigate obesity-induced molecular events in the preleukemic phase. Surprisingly, despite increasing DNA damage in hematopoietic stem cells (HSC), HFD only minimally increased mutational load, with no relevant impact on known cancer-driving genes. HFD expanded and enhanced self-renewal of hematopoietic progenitor cells (HPC), with concomitant reduction in long-term HSCs. Importantly, linoleic acid, abundant in HFD, fully recapitulates the effect of HFD on the self-renewal of PML::RARA HPCs through activation of peroxisome proliferator-activated receptor delta, a central regulator of fatty acid metabolism. Our findings inform dietary/pharmacologic interventions to counteract obesity-associated cancers and suggest that nongenetic factors play a key role. PREVENTION RELEVANCE: Our work informs interventions aimed at counteracting the cancer-promoting effect of obesity. On the basis of our study, individuals with a history of chronic obesity may still significantly reduce their risk by switching to a healthier lifestyle, a concept supported by evidence in solid tumors but not yet in hematologic malignancies. See related Spotlight, p. 47.


Subject(s)
Leukemia, Promyelocytic, Acute , PPAR delta , Animals , Mice , Cathepsin G , Diet, High-Fat/adverse effects , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/pathology , Obesity/complications , Oncogene Proteins, Fusion/genetics , PPAR delta/therapeutic use
3.
Sci Signal ; 16(816): eade0326, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38113337

ABSTRACT

Innate immune responses to coronavirus infections are highly cell specific. Tissue-resident macrophages, which are infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients but are inconsistently infected in vitro, exert critical but conflicting effects by secreting both antiviral type I interferons (IFNs) and tissue-damaging inflammatory cytokines. Steroids, the only class of host-targeting drugs approved for the treatment of coronavirus disease 2019 (COVID-19), indiscriminately suppress both responses, possibly impairing viral clearance. Here, we established in vitro cell culture systems that enabled us to separately investigate the cell-intrinsic and cell-extrinsic proinflammatory and antiviral activities of mouse macrophages infected with the prototypical murine coronavirus MHV-A59. We showed that the nuclear factor κB-dependent inflammatory response to viral infection was selectively inhibited by loss of the lysine demethylase LSD1, which was previously implicated in innate immune responses to cancer, with negligible effects on the antiviral IFN response. LSD1 ablation also enhanced an IFN-independent antiviral response, blocking viral egress through the lysosomal pathway. The macrophage-intrinsic antiviral and anti-inflammatory activity of Lsd1 inhibition was confirmed in vitro and in a humanized mouse model of SARS-CoV-2 infection. These results suggest that LSD1 controls innate immune responses against coronaviruses at multiple levels and provide a mechanistic rationale for potentially repurposing LSD1 inhibitors for COVID-19 treatment.


Subject(s)
COVID-19 , Lysine , Animals , Humans , Mice , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Cytokines/metabolism , SARS-CoV-2/metabolism
4.
Mol Cancer Res ; 20(7): 1108-1121, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35348729

ABSTRACT

In patients with trastuzumab-resistant HER2-positive breast cancer, the combination of everolimus (mTORC1 inhibitor) with trastuzumab failed to show a clinically significant benefit. However, the combination of mTOR inhibition and the antibody-drug conjugate (ADC) trastuzumab-emtansine (T-DM1) remains unexplored. We tested T-DM1 plus everolimus in a broad panel of HER2-positive breast cancer cell lines. The combination was superior to T-DM1 alone in four cell lines (HCC1954, SKBR3, EFM192A, and MDA-MB-36) and in two cultures from primary tumor cells derived from HER2-positive patient-derived xenografts (PDX), but not in BT474 cells. In the trastuzumab-resistant HCC1954 cell line, we characterized the effects of the combination using TAK-228 (mTORC1 and -2 inhibitor) and knockdown of the different mTOR complex components. T-DM1 did not affect mTOR downstream signaling nor induct autophagy. Importantly, mTOR inhibition increased intracellular T-DM1 levels, leading to increased lysosomal accumulation of the compound. The increased efficacy of mTOR inhibition plus T-DM1 was abrogated by lysosome inhibitors (chloroquine and bafilomycin A1). Our experiments suggest that BT474 are less sensitive to T-DM1 due to lack of optimal lysosomal processing and intrinsic resistance to the DM1 moiety. Finally, we performed several in vivo experiments that corroborated the superior activity of T-DM1 and everolimus in HCC1954 and PDX-derived mouse models. In summary, everolimus in combination with T-DM1 showed strong antitumor effects in HER2-positive breast cancer, both in vitro and in vivo. This effect might be related, at least partially, to mTOR-dependent lysosomal processing of T-DM1, a finding that might apply to other ADCs that require lysosomal processing. IMPLICATIONS: Inhibition of mTOR increases the antitumor activity of T-DM1, supporting that the combination of mTOR inhibitors and antibody-drug conjugates warrants clinical evaluation in patients with HER2-positive breast cancer.


Subject(s)
Breast Neoplasms , Immunoconjugates , Ado-Trastuzumab Emtansine , Animals , Antibodies, Monoclonal, Humanized , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Everolimus/pharmacology , Female , Humans , Immunoconjugates/pharmacology , Mechanistic Target of Rapamycin Complex 1 , Mice , Receptor, ErbB-2/metabolism , TOR Serine-Threonine Kinases , Trastuzumab/pharmacology , Xenograft Model Antitumor Assays
5.
Cancer Lett ; 507: 1-12, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33684534

ABSTRACT

Large cell carcinoma (LCC) is a rare and aggressive lung cancer subtype with poor prognosis and no targeted therapies. Tumor-associated fibroblasts (TAFs) derived from LCC tumors exhibit premature senescence, and coculture of pulmonary fibroblasts with LCC cell lines selectively induces fibroblast senescence, which in turn drives LCC cell growth and invasion. Here we identify MMP1 as overexpressed specifically in LCC cell lines, and we show that expression of MMP1 by LCC cells is necessary for induction of fibroblast senescence and consequent tumor promotion in both cell culture and mouse models. We also show that MMP1, in combination with TGF-ß1, is sufficient to induce fibroblast senescence and consequent LCC promotion. Furthermore, we implicate PAR-1 and oxidative stress in MMP1/TGF-ß1-induced TAF senescence. Our results establish an entirely new role for MMP1 in cancer, and support a novel therapeutic strategy in LCC based on targeting senescent TAFs.


Subject(s)
Cancer-Associated Fibroblasts/enzymology , Carcinoma, Large Cell/enzymology , Cell Proliferation , Cellular Senescence , Lung Neoplasms/enzymology , Matrix Metalloproteinase 1/metabolism , Animals , Cancer-Associated Fibroblasts/pathology , Carcinoma, Large Cell/genetics , Carcinoma, Large Cell/pathology , Cell Line, Tumor , Coculture Techniques , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Matrix Metalloproteinase 1/genetics , Mice, Nude , Oxidative Stress , Paracrine Communication , Receptor, PAR-1/genetics , Receptor, PAR-1/metabolism , Signal Transduction , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Tumor Burden
6.
Sci Rep ; 5: 10027, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25941117

ABSTRACT

Targeting the ubiquitin proteasome pathway has emerged as a rational approach in the treatment of human cancers. Autophagy has been described as a cytoprotective mechanism to increase tumor cell survival under stress conditions. Here, we have focused on the role of proteasome inhibition in cell cycle progression and the role of autophagy in the proliferation recovery. The study was performed in the breast cancer cell line MCF7 compared to the normal mammary cell line MCF10A. We found that the proteasome inhibitor MG132 induced G1/S arrest in MCF10A, but G2/M arrest in MCF7 cells. The effect of MG132 on MCF7 was reproduced on MCF10A cells in the presence of the glycogen synthase kinase 3ß (GSK-3ß) inhibitor VII. Similarly, MCF7 cells overexpressing constitutively active GSK-3ß behaved like MCF10A cells. On the other hand, MCF10A cells remained arrested after MG132 removal while MCF7 recovered the proliferative capacity. Importantly, this recovery was abolished in the presence of the autophagy inhibitor 3-methyladenine (3-MA). Thus, our results support the relevance of GSK-3ß and autophagy as two targets for controlling cell cycle progression and proliferative capacity in MCF7, highlighting the co-treatment of breast cancer cells with 3-MA to synergize the effect of the proteasome inhibition.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , G1 Phase Cell Cycle Checkpoints , Glycogen Synthase Kinase 3/metabolism , Proteasome Endopeptidase Complex/metabolism , S Phase Cell Cycle Checkpoints , Autophagy , Cell Proliferation , Glycogen Synthase Kinase 3 beta , Humans , MCF-7 Cells , Signal Transduction
7.
Neurobiol Aging ; 36(5): 1953-63, 2015 May.
Article in English | MEDLINE | ID: mdl-25817083

ABSTRACT

Autophagy plays a key role in the maintenance of cellular homeostasis, and autophagy deregulation gives rise to severe disorders. Many of the signaling pathways regulating autophagy under stress conditions are still poorly understood. Using a model of proteasome stress in rat hippocampus, we have characterized the functional crosstalk between the ubiquitin proteasome system and the autophagy-lysosome pathway, identifying also age-related modifications in the crosstalk between both proteolytic systems. Under proteasome inhibition, both autophagy activation and resolution were efficiently induced in young but not in aged rats, leading to restoration of protein homeostasis only in young pyramidal neurons. Importantly, proteasome stress inhibited glycogen synthase kinase-3ß in young but activated in aged rats. This age-related difference could be because of a dysfunction in the signaling pathway of the insulin growth factor-1 under stress situations. Present data highlight the potential role of glycogen synthase kinase-3ß in the coordination of both proteolytic systems under stress situation, representing a key molecular target to sort out this deleterious effect.


Subject(s)
Aging/metabolism , Aging/physiology , Autophagy/physiology , Glycogen Synthase Kinase 3/physiology , Hippocampus/physiology , Lysosomes/physiology , Proteasome Endopeptidase Complex/physiology , Pyramidal Cells/metabolism , Signal Transduction/physiology , Animals , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Homeostasis , Insulin-Like Growth Factor I/metabolism , Male , Neurodegenerative Diseases/genetics , Proteasome Inhibitors , Proteins/metabolism , Proteolysis , Pyramidal Cells/physiology , Rats, Wistar , Ubiquitin/physiology
8.
Clin Cancer Res ; 21(9): 2157-66, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25623215

ABSTRACT

PURPOSE: Patients with colorectal cancer who respond to the anti-EGFR antibody cetuximab often develop resistance within several months of initiating therapy. To design new lines of treatment, the molecular landscape of resistant tumors must be ascertained. We investigated the role of mutations in the EGFR signaling axis on the acquisition of resistance to cetuximab in patients and cellular models. EXPERIMENTAL DESIGN: Tissue samples were obtained from 37 patients with colorectal cancer who became refractory to cetuximab. Colorectal cancer cells sensitive to cetuximab were treated until resistant derivatives emerged. Mutational profiling of biopsies and cell lines was performed. Structural modeling and functional analyses were performed to causally associate the alleles to resistance. RESULTS: The genetic profile of tumor specimens obtained after cetuximab treatment revealed the emergence of a complex pattern of mutations in EGFR, KRAS, NRAS, BRAF, and PIK3CA genes, including two novel EGFR ectodomain mutations (R451C and K467T). Mutational profiling of cetuximab-resistant cells recapitulated the molecular landscape observed in clinical samples and revealed three additional EGFR alleles: S464L, G465R, and I491M. Structurally, these mutations are located in the cetuximab-binding region, except for the R451C mutant. Functionally, EGFR ectodomain mutations prevent binding to cetuximab but a subset is permissive for interaction with panitumumab. CONCLUSIONS: Colorectal tumors evade EGFR blockade by constitutive activation of downstream signaling effectors and through mutations affecting receptor-antibody binding. Both mechanisms of resistance may occur concomitantly. Our data have implications for designing additional lines of therapy for patients with colorectal cancer who relapse upon treatment with anti-EGFR antibodies.


Subject(s)
Colorectal Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Genes, erbB-1/genetics , Mutation , Antineoplastic Agents/therapeutic use , Blotting, Western , Cell Line, Tumor , Cetuximab/therapeutic use , Colorectal Neoplasms/drug therapy , DNA Mutational Analysis , Extracellular Space/genetics , Flow Cytometry , Humans , Real-Time Polymerase Chain Reaction
9.
Front Mol Neurosci ; 6: 54, 2014.
Article in English | MEDLINE | ID: mdl-24427113

ABSTRACT

PI3K activation promotes the formation of synaptic contacts and dendritic spines, morphological features of glutamatergic synapses that are commonly known to be related to learning processes. In this report, we show that in vivo administration of a peptide that activates the PI3K signaling pathway increases spine density in the rat hippocampus and enhances the animals' cognitive abilities, while in vivo electrophysiological recordings show that PI3K activation results in synaptic enhancement of Schaffer and stratum lacunosum moleculare inputs. Morphological characterization of the spines reveals that subjecting the animals to contextual fear-conditioning training per se promotes the formation of large spines, while PI3K activation reverts this effect and favors a general change toward small head areas. Studies using hippocampal neuronal cultures show that the PI3K spinogenic process is NMDA-dependent and activity-independent. In culture, PI3K activation was followed by mRNA upregulation of glutamate receptor subunits and of the immediate-early gene Arc. Time-lapse studies confirmed the ability of PI3K to induce the formation of small spines. Finally, we demonstrate that the spinogenic effect of PI3K can be induced in the presence of neurodegeneration, such as in the Tg2576 Alzheimer's mouse model. These findings highlight that the PI3K pathway is an important regulator of neuronal connectivity and stress the relationship between spine size and learning processes.

10.
J Neurochem ; 123(4): 635-44, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22913583

ABSTRACT

Regulation of proteasome abundance to meet cell needs under stress conditions is critical for maintaining cellular homeostasis. However, the effects of aging on this homeostatic response remain unknown. In this report, we analyzed in young and aged rat hippocampus, the dynamics of proteasome recovery induced by proteasome stress. Proteasome inhibition in young rats leads to an early and coordinate transcriptional and translational up-regulation of both the catalytic subunits of constitutive proteasome and the proteasome maturation protein. By contrast, aged rats up-regulated the inducible catalytic subunits and showed a lower and shorter expression of proteasome maturation protein. This resulted in a faster recovery of proteasome activity in young rats. Importantly, proteasome inhibition highly affected pyramidal cells, leading to the accumulation of ubiquitinated proteins in perinuclear regions of aged, but not young pyramidal neurons. These data strongly suggest that age-dependent differences in proteasome level and composition could contribute to neurodegeneration induced by proteasome dysfunction in normal and pathological aging.


Subject(s)
Aging , Hippocampus/metabolism , Proteasome Endopeptidase Complex/metabolism , Up-Regulation/physiology , Age Factors , Animals , Catalytic Domain/physiology , Cell Nucleolus/metabolism , Hippocampus/cytology , Immunoproteins/metabolism , Male , Neurons/cytology , Neurons/metabolism , Rats , Rats, Wistar
11.
J Neuroinflammation ; 9: 87, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22559833

ABSTRACT

BACKGROUND: Neuroinflammation and protein accumulation are characteristic hallmarks of both normal aging and age-related neurodegenerative diseases. However, the relationship between these factors in neurodegenerative processes is poorly understood. We have previously shown that proteasome inhibition produced higher neurodegeneration in aged than in young rats, suggesting that other additional age-related events could be involved in neurodegeneration. We evaluated the role of lipopolysaccharide (LPS)-induced neuroinflammation as a potential synergic risk factor for hippocampal neurodegeneration induced by proteasome inhibition. METHODS: Young male Wistar rats were injected with 1 µL of saline or LPS (5 mg/mL) into the hippocampus to evaluate the effect of LPS-induced neuroinflammation on protein homeostasis. The synergic effect of LPS and proteasome inhibition was analyzed in young rats that first received 1 µL of LPS and 24 h later 1 µL (5 mg/mL) of the proteasome inhibitor lactacystin. Animals were sacrificed at different times post-injection and hippocampi isolated and processed for gene expression analysis by real-time polymerase chain reaction; protein expression analysis by western blots; proteasome activity by fluorescence spectroscopy; immunofluorescence analysis by confocal microscopy; and degeneration assay by Fluoro-Jade B staining. RESULTS: LPS injection produced the accumulation of ubiquitinated proteins in hippocampal neurons, increased expression of the E2 ubiquitin-conjugating enzyme UB2L6, decreased proteasome activity and increased immunoproteasome content. However, LPS injection was not sufficient to produce neurodegeneration. The combination of neuroinflammation and proteasome inhibition leads to higher neuronal accumulation of ubiquitinated proteins, predominant expression of pro-apoptotic markers and increased neurodegeneration, when compared with LPS or lactacystin (LT) injection alone. CONCLUSIONS: Our results identify neuroinflammation as a risk factor that increases susceptibility to neurodegeneration induced by proteasome inhibition. These results highlight the modulation of neuroinflammation as a mechanism for neuronal protection that could be relevant in situations where both factors are present, such as aging and neurodegenerative diseases.


Subject(s)
Hippocampus/drug effects , Lipopolysaccharides/toxicity , Nerve Degeneration/chemically induced , Proteasome Inhibitors/toxicity , Acetylcysteine/analogs & derivatives , Acetylcysteine/toxicity , Aging/drug effects , Aging/physiology , Animals , Drug Synergism , Hippocampus/enzymology , Hippocampus/pathology , Inflammation/chemically induced , Inflammation/epidemiology , Inflammation/pathology , Male , Nerve Degeneration/epidemiology , Nerve Degeneration/pathology , Proteasome Endopeptidase Complex/metabolism , Rats , Rats, Wistar , Ubiquitination/drug effects , Ubiquitination/physiology
12.
J Neurosci Res ; 89(9): 1471-7, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21608013

ABSTRACT

Amino acid analogs promote translational errors that result in aberrant protein synthesis and have been used to understand the effects of protein misfolding in a variety of physiological and pathological settings. TDP-43 is a protein that is linked to protein aggregation and toxicity in a variety of neurodegenerative diseases. This study exposed primary rat neurons and astrocyte cultures to established amino acid analogs (canavanine and azetidine-2-carboxylic acid) and showed that both cell types undergo a dose-dependent increase in toxicity, with neurons exhibiting a greater degree of toxicity compared with astrocytes. Neurons and astrocytes exhibited similar increases in ubiquitinated and oxidized protein following analog treatment. Analog treatment increased heat shock protein (Hsp) levels in both neurons and astrocytes. In neurons, and to a lesser extent astrocytes, the levels of TDP-43 increased in response to analog treatment. Taken together, these data indicate that neurons exhibit preferential toxicity and alterations in TDP-43 in response to increased protein misfolding compared with astrocytes.


Subject(s)
Astrocytes/drug effects , Azetidinecarboxylic Acid/toxicity , Canavanine/toxicity , DNA-Binding Proteins/metabolism , Neurons/drug effects , Protein Folding/drug effects , Amino Acids/agonists , Amino Acids/toxicity , Animals , Astrocytes/metabolism , Cell Survival/drug effects , Cells, Cultured , DNA-Binding Proteins/drug effects , Dose-Response Relationship, Drug , Heat-Shock Proteins/drug effects , Heat-Shock Proteins/metabolism , Neurons/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley
13.
J Alzheimers Dis ; 22(3): 839-48, 2010.
Article in English | MEDLINE | ID: mdl-20858948

ABSTRACT

Recent studies have demonstrated a potential role for oligomeric forms of amyloid-ß (Aß) in the pathogenesis of Alzheimer's disease (AD), although it remains unclear which aspects of AD may be mediated by oligomeric Aß. In the present study, we found that primary cultures of rat cortical neurons exhibit a dose-dependent increase in cell death following Aß oligomer administration, while primary cultures of astrocytes exhibited no overt toxicity with even the highest concentrations of oligomer treatment. Neither cell type exhibited toxicity when treated by equal concentrations of monomeric Aß. The neuron death induced by oligomer treatment was associated with an increase in reactive oxygen species (ROS), altered expression of mitochondrial fission and fusion proteins, and JUN kinase activation. Pharmacological inhibition of JUN kinase ameliorated oligomeric Aß toxicity in neurons. These data indicate that oligomeric Aß is sufficient to selectively induce toxicity in neurons, but not astrocytes, with neuron death occurring in a JUN kinase-dependent manner. Additionally, these observations implicate a role for oligomeric Aß as a contributor to neuronal oxidative stress and mitochondrial disturbances in AD.


Subject(s)
Amyloid beta-Peptides/toxicity , JNK Mitogen-Activated Protein Kinases/physiology , Neurons/metabolism , Oxidative Stress/physiology , Animals , Cells, Cultured , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Neurons/drug effects , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Sulfonamides/pharmacology , Thiadiazoles/pharmacology
14.
Free Radic Biol Med ; 49(8): 1290-7, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20678570

ABSTRACT

Maintaining protein homeostasis is vital to cell viability, with numerous studies demonstrating a role for proteasome inhibition occurring during the aging of a variety of tissues and, presumably, contributing to the disruption of cellular homeostasis during aging. In this study we sought to elucidate the differences between neurons and astrocytes in regard to basal levels of protein synthesis, proteasome-mediated protein degradation, and sensitivity to cytotoxicity after proteasome inhibitor treatment. In these studies we demonstrate that neurons have an increased vulnerability, compared to astrocyte cultures, to proteasome-inhibitor-induced cytotoxicity. No significant difference was observed between these two cell types in regard to the basal rates of protein synthesis, or basal rates of protein degradation, in the pool of short-lived proteins. After proteasome inhibitor treatment neuronal crude lysates were observed to undergo greater increases in the levels of ubiquitinated and oxidized proteins and selectively exhibited increased levels of newly synthesized proteins accumulating within the insoluble protein pool, compared to astrocytes. Together, these data suggest a role for increased oxidized proteins and sequestration of newly synthesized proteins in the insoluble protein pool, as potential mediators of the selective neurotoxicity after proteasome inhibitor treatment. The implications for neurons exhibiting increased sensitivity to acute proteasome inhibitor exposure, and the corresponding changes in protein homeostasis observed after proteasome inhibition, are discussed in the context of both aging and age-related disorders of the nervous system.


Subject(s)
Astrocytes/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Leupeptins/pharmacology , Neurons/metabolism , Oxidative Stress , Aging/drug effects , Aging/metabolism , Aging/pathology , Animals , Astrocytes/drug effects , Astrocytes/pathology , Cell Extracts , Cells, Cultured , Cysteine Proteinase Inhibitors/adverse effects , Cysteine Proteinase Inhibitors/therapeutic use , Humans , Leupeptins/adverse effects , Leupeptins/therapeutic use , Neurons/drug effects , Neurons/pathology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/prevention & control , Oxidation-Reduction/drug effects , Proteasome Inhibitors , Rats , Rats, Sprague-Dawley , Solubility/drug effects , Ubiquitination/drug effects
15.
Aging Cell ; 8(6): 654-65, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19747230

ABSTRACT

Dysfunctions of the ubiquitin proteasome system (UPS) have been proposed to be involved in the aetiology and/or progression of several age-related neurodegenerative disorders. However, the mechanisms linking proteasome dysfunction to cell degeneration are poorly understood. We examined in young and aged rat hippocampus the activation of the unfolded protein response (UPR) under cellular stress induced by proteasome inhibition. Lactacystin injection blocked proteasome activity in young and aged animals in a similar extent and increased the amount of ubiquitinated proteins. Young animals activated the three UPR arms, IRE1alpha, ATF6alpha and PERK, whereas aged rats failed to induce the IRE1alpha and ATF6alpha pathways. In consequence, aged animals did not induce the expression of pro-survival factors (chaperones, Bcl-XL and Bcl-2), displayed a more sustained expression of pro-apoptotic markers (CHOP, Bax, Bak and JKN), an increased caspase-3 processing. At the cellular level, proteasome inhibition induced neuronal damage in young and aged animals as assayed using Fluorojade-B staining. However, degenerating neurons were evident as soon as 24 h postinjection in aged rats, but it was delayed up to 3 days in young animals. Our findings show evidence supporting age-related dysfunctions in the UPR activation as a potential mechanism linking protein accumulation to cell degeneration. An imbalance between pro-survival and pro-apoptotic proteins, because of noncanonical activation of the UPR in aged rats, would increase the susceptibility to cell degeneration. These findings add a new molecular vision that might be relevant in the aetiology of several age-related neurodegenerative disorders.


Subject(s)
Acetylcysteine/analogs & derivatives , Aging , Hippocampus/metabolism , Hippocampus/pathology , Nerve Degeneration/metabolism , Proteasome Inhibitors , Unfolded Protein Response/drug effects , Acetylcysteine/pharmacology , Animals , Biomarkers , Caspase 3/metabolism , Enzyme Inhibitors/pharmacology , Hippocampus/drug effects , Male , Nerve Degeneration/chemically induced , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Wistar , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...