Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 33(15): e2006832, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33751670

ABSTRACT

Pressure-stabilized hydrides are a new rapidly growing class of high-temperature superconductors, which is believed to be described within the conventional phonon-mediated mechanism of coupling. Here, the synthesis of one of the best-known high-TC superconductors-yttrium hexahydride I m 3 ¯ m -YH6 is reported, which displays a superconducting transition at ≈224 K at 166 GPa. The extrapolated upper critical magnetic field Bc2 (0) of YH6 is surprisingly high: 116-158 T, which is 2-2.5 times larger than the calculated value. A pronounced shift of TC in yttrium deuteride YD6 with the isotope coefficient 0.4 supports the phonon-assisted superconductivity. Current-voltage measurements show that the critical current IC and its density JC may exceed 1.75 A and 3500 A mm-2 at 4 K, respectively, which is higher than that of the commercial superconductors, such as NbTi and YBCO. The results of superconducting density functional theory (SCDFT) and anharmonic calculations, together with anomalously high critical magnetic field, suggest notable departures of the superconducting properties from the conventional Migdal-Eliashberg and Bardeen-Cooper-Schrieffer theories, and presence of an additional mechanism of superconductivity.

2.
J Phys Chem Lett ; 12(1): 32-40, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33296213

ABSTRACT

We conducted a joint experimental-theoretical investigation of the high-pressure chemistry of europium polyhydrides at pressures of 86-130 GPa. We discovered several novel magnetic Eu superhydrides stabilized by anharmonic effects: cubic EuH9, hexagonal EuH9, and an unexpected cubic (Pm3n) clathrate phase, Eu8H46. Monte Carlo simulations indicate that cubic EuH9 has antiferromagnetic ordering with TN of up to 24 K, whereas hexagonal EuH9 and Pm3n-Eu8H46 possess ferromagnetic ordering with TC = 137 and 336 K, respectively. The electron-phonon interaction is weak in all studied europium hydrides, and their magnetic ordering excludes s-wave superconductivity, except, perhaps, for distorted pseudohexagonal EuH9. The equations of state predicted within the DFT+U approach (U - J were found within linear response theory) are in close agreement with the experimental data. This work shows the great influence of the atomic radius on symmetry-breaking distortions of the crystal structures of superhydrides and on their thermodynamic stability.

3.
Proc Natl Acad Sci U S A ; 110(18): 7142-7, 2013 Apr 30.
Article in English | MEDLINE | ID: mdl-23589892

ABSTRACT

Ferropericlase [(Mg,Fe)O] is one of the most abundant minerals of the earth's lower mantle. The high-spin (HS) to low-spin (LS) transition in the Fe(2+) ions may dramatically alter the physical and chemical properties of (Mg,Fe)O in the deep mantle. To understand the effects of compression on the ground electronic state of iron, electronic and magnetic states of Fe(2+) in (Mg0.75Fe0.25)O have been investigated using transmission and synchrotron Mössbauer spectroscopy at high pressures and low temperatures (down to 5 K). Our results show that the ground electronic state of Fe(2+) at the critical pressure Pc of the spin transition close to T = 0 is governed by a quantum critical point (T = 0, P = P(c)) at which the energy required for the fluctuation between HS and LS states is zero. Analysis of the data gives P(c) = 55 GPa. Thermal excitation within the HS or LS states (T > 0 K) is expected to strongly influence the magnetic as well as physical properties of ferropericlase. Multielectron theoretical calculations show that the existence of the quantum critical point at temperatures approaching zero affects not only physical properties of ferropericlase at low temperatures but also its properties at P-T of the earth's lower mantle.

4.
Phys Rev Lett ; 109(8): 086402, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-23002762

ABSTRACT

The insulator-metal transition was observed experimentally in nickel monoxide (NiO) at very high pressures of ~240 GPa. The sample resistance becomes measurable at about 130 GPa and decreases substantially with the pressure increase to ~240 GPa. A sharp drop in resistance by about 3 orders of magnitude has been observed at ~240 GPa with a concomitant change of the resistance type from semiconducting to metallic. This is the first experimental observation of an insulator-metal transition in NiO, which was anticipated by Mott decades ago. From simple multielectron consideration, the metallic phase of NiO forms when the effective Hubbard energy U(eff) is almost equal to the estimated full bandwidth 2W.

5.
Nat Mater ; 3(8): 558-63, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15235595

ABSTRACT

Nitrogen usually consists of molecules where two atoms are strongly triple-bonded. Here, we report on an allotropic form of nitrogen where all atoms are connected with single covalent bonds, similar to carbon atoms in diamond. The compound was synthesized directly from molecular nitrogen at temperatures above 2,000 K and pressures above 110 GPa using a laser-heated diamond cell. From X-ray and Raman scattering we have identified this as the long-sought-after polymeric nitrogen with the theoretically predicted cubic gauche structure (cg-N). This cubic phase has not been observed previously in any element. The phase is a stiff substance with bulk modulus >or=300 GPa, characteristic of strong covalent solids. The polymeric nitrogen is metastable, and contrasts with previously reported amorphous non-molecular nitrogen, which is most likely a mixture of small clusters of non-molecular phases. The cg-N represents a new class of single-bonded nitrogen materials with unique properties such as energy capacity: more than five times that of the most powerfully energetic materials.


Subject(s)
Crystallization/methods , Manufactured Materials , Nanotechnology/methods , Nitrogen/chemistry , Crystallography , Materials Testing , Molecular Conformation , Phase Transition , Pressure , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...