Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 374
1.
ACS Sens ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38776471

Ovarian cancer (OC) has the highest mortality rate among malignant tumors, primarily because it is difficult to diagnose early. Exosomes, a type of extracellular vesicle rich in parental information, have garnered significant attention in the field of cancer diagnosis and treatment. They play an important regulatory role in the occurrence, development, and metastasis of OC. Consequently, exosomes have emerged as noninvasive biomarkers for early cancer detection. Therefore, identifying cancer-derived exosomes may offer a novel biomarker for the early detection of OC. In this study, we developed a metal-organic frameworks assembled "double hook"-type aptamer electrochemical sensor, which enables accurate early diagnosis of OC. Under optimal experimental conditions, electrochemical impedance spectroscopy technology demonstrated a good linear relationship within the concentration range of 31-3.1 × 106 particles per microliter, with a detection limit as low as 12 particles per microliter. The universal exosome detection platform is constructed, and this platform can not only differentiate between high-grade serous ovarian cancer (HGSOC) patients and healthy individuals but also distinguish between HGSOC patients and nonhigh-grade serous OC (non-HGSOC). Consequently, it provides a novel strategy for the early diagnosis of OC and holds great significance in clinical differential diagnosis.

2.
J Plant Physiol ; 299: 154276, 2024 May 24.
Article En | MEDLINE | ID: mdl-38801806

Ginsenoside F1 has high medicinal values, which is a kind of rare triterpene saponin isolated from Panax plants. The extremely low content of ginsenoside F1 in herbs has limited its research and application in medical field. In this work, we constructed a pathway in tobacco for the biosynthesis of ginsenoside F1 by metabolic engineering. Four enzyme genes (PnDDS, CYP716A47, CYP716S1 and UGT71A56) isolated from Panax notoginseng were introduced into tobacco. Thus, a biosynthetic pathway for ginsenoside F1 synthesis was artificially constructed in tobacco cells; moreover, the four exogenous genes could be expressed in the roots, stems and leaves of transgenic plants. Consequently, ginsenoside F1 and its precursors were successfully synthesized in the transgenic tobacco, compared with Panax plants, the content of ginsenoside F1 in transgenic tobacco was doubled. In addition, accumulation of ginsenoside F1 and its precursors in transgenic tobacco shows organ specificity. Based on these results, a new approach was established to produce rare ginsenoside F1; meanwhile, such strategy could also be employed in plant hosts for the heterologous synthesis of other important or rare natural products.

3.
Bull Environ Contam Toxicol ; 112(5): 75, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733395

This study systematically investigated the pollution levels and migration trends of PBDEs in soils and plants around engineering plastics factory, and identified the ecological risks of PBDEs in the environment around typical pollution sources.The results showed that 13 kinds of PBDEs were widely detected in the surrounding areas, and the concentration level was higher than the general environmental pollution level. The total PBDE concentrations (∑13PBDEs) in soils ranged from 14.6 to 278.4 ng/g dry weight (dw), and in plants ranged from 11.5 to 176 ng/g dw. Both soil and plant samples showed that BDE-209 was the most important congener, the pollution level in soil and plant was similar, and the composition of PBDEs congener was similar. In the soil column (50 cm), the radial migration of PBDEs was mainly concentrated in the 0-30 cm section. Except for BDE-66, which was mainly located in the 20-30 cm soil layer, the concentration of PBDEs was the highest in the 0-10 cm region. Furthermore, the environmental risks of PBDEs in soil and plants were evaluated by hazard quotient method, and the HQ values were all < 1, which did not exhibit any ecological risk. The evaluation results also showed that the ecological risk of PBDEs in soil was higher than that of plants, especially penta-BDE, which should be paid more attention.


Environmental Monitoring , Halogenated Diphenyl Ethers , Plastics , Soil Pollutants , Soil , Halogenated Diphenyl Ethers/analysis , Soil Pollutants/analysis , Risk Assessment , Soil/chemistry , Plastics/analysis , Plants , China
4.
J Proteome Res ; 23(5): 1689-1701, 2024 May 03.
Article En | MEDLINE | ID: mdl-38565891

Cyanobacteria are the oldest prokaryotic photoautotrophic microorganisms and have evolved complicated post-translational modification (PTM) machinery to respond to environmental stress. Lysine 2-hydroxyisobutyrylation (Khib) is a newly identified PTM that is reported to play important roles in diverse biological processes, however, its distribution and function in cyanobacteria have not been reported. Here, we performed the first systematic studies of Khib in a model cyanobacterium Synechococcus sp. strain PCC 7002 (Syn7002) using peptide prefractionation, pan-Khib antibody enrichment, and high-accuracy mass spectrometry (MS) analysis. A total of 1875 high-confidence Khib sites on 618 proteins were identified, and a large proportion of Khib sites are present on proteins in the cellular metabolism, protein synthesis, and photosynthesis pathways. Using site-directed mutagenesis and functional studies, we showed that Khib of glutaredoxin (Grx) affects the efficiency of the PS II reaction center and H2O2 resistance in Syn7002. Together, this study provides novel insights into the functions of Khib in cyanobacteria and suggests that reversible Khib may influence the stress response and photosynthesis in both cyanobacteria and plants.


Lysine , Protein Processing, Post-Translational , Synechococcus , Lysine/metabolism , Synechococcus/metabolism , Synechococcus/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Hydrogen Peroxide/metabolism , Glutaredoxins/metabolism , Glutaredoxins/genetics , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Mutagenesis, Site-Directed , Photosynthesis , Cyanobacteria/metabolism , Cyanobacteria/genetics , Mass Spectrometry
5.
Biosens Bioelectron ; 257: 116313, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38688229

The emergence and rapid spread of Mpox (formerly monkeypox) have caused significant societal challenges. Adequate and appropriate diagnostics procedures are an urgent necessity. Herein, we discover a pair of aptamers through the systematic evolution of ligands by exponential enrichment (SELEX) that exhibit high affinity and bind to different sites towards the A29 protein of the Mpox virus. Subsequently, we propose a facile, sensitive, convenient CRISPR/Cas12a-mediated aptasensor for detecting the A29 antigen. The procedure employs the bivalent aptamers recognition, which induces the formation of a proximity switch probe and initiates subsequent cascade strand displacement reactions, then triggers CRISPR/Cas12a DNA trans-cleavage to achieve the sensitive detection of Mpox. Our method enables selective and ultrasensitive evaluation of the A29 protein within the range of 1 ng mL-1 to 1 µg mL-1, with a limit of detection (LOD) at 0.28 ng mL-1. Moreover, spiked A29 protein recovery exceeds 96.9%, while the detection activity remains above 91.9% after six months of storage at 4 °C. This aptasensor provides a novel avenue for exploring clinical diagnosis in cases involving Mpox as facilitating development in various analyte sensors.


Aptamers, Nucleotide , Biosensing Techniques , CRISPR-Cas Systems , Limit of Detection , SELEX Aptamer Technique , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , Humans , Antigens, Viral/analysis , CRISPR-Associated Proteins/chemistry , Bacterial Proteins , Endodeoxyribonucleases
6.
J Proteome Res ; 23(4): 1174-1187, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38427982

Protein homeostasis is essential for cyanobacteria to maintain proper cellular function under adverse and fluctuating conditions. The AAA+ superfamily of proteolytic complexes in cyanobacteria plays a critical role in this process, including ClpXP, which comprises a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. Despite the physiological effects of ClpX on growth and photosynthesis, its potential substrates and underlying mechanisms in cyanobacteria remain unknown. In this study, we employed a streptavidin-biotin affinity pull-down assay coupled with label-free proteome quantitation to analyze the interactome of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We identified 503 proteins as potential ClpX-binding targets, many of which had novel interactions. These ClpX-binding targets were found to be involved in various biological processes, with particular enrichment in metabolic processes and photosynthesis. Using protein-protein docking, GST pull-down, and biolayer interferometry assays, we confirmed the direct association of ClpX with the photosynthetic proteins, ferredoxin-NADP+ oxidoreductase (FNR) and phycocyanin subunit (CpcA). Subsequent functional investigations revealed that ClpX participates in the maintenance of FNR homeostasis and functionality in Synechocystis grown under different light conditions. Overall, our study provides a comprehensive understanding of the extensive functions regulated by ClpX in cyanobacteria to maintain protein homeostasis and adapt to environmental challenges.


Photosynthesis , Synechocystis , Photosynthesis/genetics , Synechocystis/genetics , Synechocystis/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Phycocyanin/metabolism
7.
Front Pharmacol ; 15: 1293468, 2024.
Article En | MEDLINE | ID: mdl-38362153

Introduction: Despite the clinical value of Chinese herbal medicine (CHM), restricted comprehension of its toxicity limits the secure and efficacious application. Previous studies primarily focused on exploring specific toxicities within CHM, without providing an overview of CHM's toxicity. The absence of a quantitative assessment of focal points renders the future research trajectory ambiguous. Therefore, this study aimed to reveal research trends and areas of concern for the past decade. Methods: A cross-sectional study was conducted on publications related to CHM and toxicity over the past decade from Web of Science Core Collection database. The characteristics of the publication included publication year, journal, institution, funding, keywords, and citation counts were recorded. Co-occurrence analysis and trend topic analysis based on bibliometric analysis were conducted on keywords and citations. Results: A total of 3,225 publications were analyzed. Number of annal publications increased over the years, with the highest number observed in 2022 (n = 475). The Journal of Ethnopharmacology published the most publications (n = 425). The most frequently used toxicity classifications in keywords were hepatotoxicity (n = 119) or drug-induced liver injury (n = 48), and nephrotoxicity (n = 40). Co-occurrence analysis revealed relatively loose connections between CHM and toxicity, and their derivatives. Keywords emerging from trend topic analysis for the past 3 years (2019-2022) included ferroptosis, NLRP3 inflammasome, machine learning, network pharmacology, traditional uses, and pharmacology. Conclusion: Concerns about the toxicity of CHM have increased in the past decade. However, there remains insufficient studies that directly explore the intersection of CHM and toxicity. Hepatotoxicity and nephrotoxicity, as the most concerned toxicity classifications associated with CHM, warrant more in-depth investigations. Apoptosis was the most concerned toxicological mechanism. As a recent increase in attention, exploring the mechanisms of ferroptosis in nephrotoxicity and NLRP3 inflammasome in hepatotoxicity could provide valuable insights. Machine learning and network pharmacology are potential methods for future studies.

8.
Plant Physiol ; 194(2): 634-661, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-37770070

Lysine acetylation is a conserved regulatory posttranslational protein modification that is performed by lysine acetyltransferases (KATs). By catalyzing the transfer of acetyl groups to substrate proteins, KATs play critical regulatory roles in all domains of life; however, no KATs have yet been identified in cyanobacteria. Here, we tested all predicted KATs in the cyanobacterium Synechococcus sp. PCC 7002 (Syn7002) and demonstrated that A1596, which we named cyanobacterial Gcn5-related N-acetyltransferase (cGNAT2), can catalyze lysine acetylation in vivo and in vitro. Eight amino acid residues were identified as the key residues in the putative active site of cGNAT2, as indicated by structural simulation and site-directed mutagenesis. The loss of cGNAT2 altered both growth and photosynthetic electron transport in Syn7002. In addition, quantitative analysis of the lysine acetylome identified 548 endogenous substrates of cGNAT2 in Syn7002. We further demonstrated that cGNAT2 can acetylate NAD(P)H dehydrogenase J (NdhJ) in vivo and in vitro, with the inability to acetylate K89 residues, thus decreasing NdhJ activity and affecting both growth and electron transport in Syn7002. In summary, this study identified a KAT in cyanobacteria and revealed that cGNAT2 regulates growth and photosynthesis in Syn7002 through an acetylation-mediated mechanism.


Lysine Acetyltransferases , Synechococcus , Lysine Acetyltransferases/genetics , Lysine Acetyltransferases/metabolism , Lysine/metabolism , Acetyltransferases/genetics , Acetyltransferases/metabolism , Synechococcus/genetics , Synechococcus/metabolism , Acetylation
9.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article En | MEDLINE | ID: mdl-38069309

Adhesion G protein-coupled receptor G2 (ADGRG2) is an orphan adhesion G protein-coupled receptor (GPCR), which performs a tumor-promoting role in certain cancers; however, it has not been systematically investigated in hepatocellular carcinoma (HCC). In the current study, we utilized multiple databases to analyze the expression and diagnostic and prognostic value of ADGRG2 in HCC and its correlation with immune infiltration and inflammatory factors. The function and upstream regulatory miRNA of ADGRG2 were validated through qPCR, Western blot, CCK8, wound healing, and dual luciferase assays. It turned out that ADGRG2 was significantly higher in HCC and had a poor survival rate, especially in AFP ≤ 400 ng/mL subgroups. Functional enrichment analysis suggested that ADGRG2 may be involved in cancer pathways and immune-related pathways. In vitro, siRNA-mediated ADGRG2 silencing could inhibit the proliferation and migration of Huh7 and HepG2 cells. There was a highly significant positive correlation between ADGRG2 and neutrophils. Moreover, NET-related genes were filtered and confirmed, such as ENO1 and S100A9. Meanwhile, the high expression of ADGRG2 was also accompanied by the highest number of inflammatory cytokines, chemokines, and chemokine receptors and good immunotherapy efficacy. Finally, AGDGR2 may be sensitive to two drugs (PIK-93 and NPK76-II-72-1) and can be targeted by miR-326. In conclusion, ADGRG2 may serve as a novel biomarker and drug target for HCC diagnosis, immunotherapy, and prognosis and was related to neutrophils and the inflammatory process of liver cancer development.


Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/metabolism , Cell Proliferation/genetics , Liver Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neutrophils/metabolism , Prognosis , Receptors, G-Protein-Coupled/genetics
10.
Ecotoxicol Environ Saf ; 268: 115710, 2023 Dec.
Article En | MEDLINE | ID: mdl-38000302

Bisphenol A (BPA), a common bisphenol molecule, is well known in the environment as an endocrine disruptor. Furthermore, BPs (BPA, BPS, BPF, and BPAF) have been shown in recent years to be neurotoxic to zebrafish. Tetramethyl bisphenol F (TMBPF) has recently been introduced as a substitute for bisphenol A (BPA) in various industries, including plastics and food contact coatings. However, a growing number of studies have demonstrated that the toxicity of some BPA substitutes is similar to or even stronger than BPA, posing potential harm to human health and the environment. In this study, we used zebrafish larvae as a model to investigate the neurodevelopmental effects of TMBPF at different concentrations (0, 0.25, 0.5, 1, 2, 4 and 8 mg/L). Our results showed that exposure to TMBPF at concentrations higher than 4 mg/L for 72 h post-fertilization (hpf) resulted in zebrafish mortality, whereas exposure to 2 mg/L for 144 hpf caused deformities. Furthermore, TMBPF exposure inhibited the development of the central nervous system, motor nerves, and dopamine neurons in zebrafish. Real-time polymerase chain reaction (PCR) analysis revealed that TMBPF exposure significantly down-regulated the expression of oxidative stress-related genes (Cu/Zn-SOD, Mn-SOD, and CAT) and neurodevelopmental genes (mbp, gafp, and syn2a), while up-regulated the expression of dopamine-related genes (th1, th2, and dat). Notably, treatment with the antioxidant N-acetylcysteine (NAC) alleviated TMBPF-induced toxicity. NAC can regulate the expression of genes related to oxidative stress, neurodevelopment and dopamine development, and make the nerve development of zebrafish normal. Overall, our research suggested that TMBPF may disrupt the development of the early central nervous system and dopamine neurons, leading to abnormal motor behavior in zebrafish larvae. These results highlight the potential risks associated with the use of TMBPF in various industries and the importance to evaluate its potential risks to human health and the environment.


Dopaminergic Neurons , Zebrafish , Humans , Animals , Zebrafish/metabolism , Dopaminergic Neurons/metabolism , Larva , Dopamine/metabolism , Benzhydryl Compounds/metabolism , Oxidative Stress , Central Nervous System , Acetylcysteine/pharmacology
11.
Curr Microbiol ; 80(12): 402, 2023 Nov 06.
Article En | MEDLINE | ID: mdl-37930435

The genotyping of Campylobacter coli was done using three methods, pulsed-field gel electrophoresis (PFGE), Sau-polymerase chain reaction (Sau-PCR), and denaturing gradient gel electrophoresis assay of flagellin gene (fla-DGGE) and the characteristics of these assays were compared. The results showed that a total of 53 strains of C. coli were isolated from chicken and duck samples in three markets. All isolates were clustered into 31, 33, and 15 different patterns with Simpson's index of diversity (SID) values of 0.972, 0.974, and 0.919, respectively. Sau-PCR assay was simpler, more rapid, and had higher discriminatory power than PFGE assay. Fla-DGGE assay could detect and illustrate the number of contamination types of C. jejuni and C. coli without cultivation, which saved more time and cost than Sau-PCR and PFGE assays. Therefore, Sau-PCR and fla-DGGE assays are both rapid, economical, and easy to perform, which have the potential to be promising and accessible for primary laboratories in genotyping C. coli strains.


Campylobacter coli , Animals , Campylobacter coli/genetics , Electrophoresis, Gel, Pulsed-Field , Flagellin/genetics , Genotype , Poultry , Polymerase Chain Reaction
12.
Biophys J ; 122(22): 4451-4466, 2023 11 21.
Article En | MEDLINE | ID: mdl-37885178

Single-particle tracking has enabled real-time, in situ quantitative studies of complex systems. However, inferring dynamic state changes from noisy and undersampling trajectories encounters challenges. Here, we introduce a data-driven method for extracting features of subtrajectories with historical experience learning (Deep-SEES), where a single-particle tracking analysis pipeline based on a self-supervised architecture automatically searches for the latent space, allowing effective segmentation of the underlying states from noisy trajectories without prior knowledge on the particle dynamics. We validated our method on a variety of noisy simulated and experimental data. Our results showed that the method can faithfully capture both stable states and their dynamic switch. In highly random systems, our method outperformed commonly used unsupervised methods in inferring motion states, which is important for understanding nanoparticles interacting with living cell membranes, active enzymes, and liquid-liquid phase separation. Self-generating latent features of trajectories could potentially improve the understanding, estimation, and prediction of many complex systems.


Nanoparticles , Single Molecule Imaging , Motion , Cell Membrane
13.
Cell Signal ; 112: 110924, 2023 12.
Article En | MEDLINE | ID: mdl-37838311

Clinical application of the widely used chemotherapeutic agent, doxorubicin (DOX), is limited by its cardiotoxicity. Mitochondrial dysfunction has been revealed as a crucial factor in DOX-induced cardiotoxicity. 7,8,3'-Trihydroxyflavone (THF) is a mimetic brain-derived neurotrophic factor with neuroprotective effects. However, the potential effects of THF on DOX-induced cardiomyocyte damage and mitochondrial disorders remain unclear. H9c2 cardiomyoblasts were exposed to DOX and/or THF at different concentrations. Cardiomyocyte injury was evaluated using lactate dehydrogenase (LDH) assay and Live/Dead cytotoxicity kit. Meanwhile, mitochondrial membrane potential (MMP), morphology, mitochondrial reactive oxygen species (mito-ROS) production, and the oxygen consumption rate of cardiomyocytes were measured. The protein levels of key mitochondria-related factors such as adenosine monophosphate-activated protein kinase (AMPK), mitofusin 2 (Mfn2), dynamin-related protein 1 (Drp1), and optic atrophy protein 1 (OPA1) were examined. We found that THF reduced LDH content and death ratio of DOX-treated cardiomyocytes in a concentration-dependent manner, while increasing MMP without significantly affecting the routine and maximum capacity of mitochondrial respiration. Mechanistically, THF increased the activity of Akt and protein levels of Mfn2 and heme oxygenase 1 (HO-1). Moreover, inhibition of Akt reversed the protective role of THF, increased mito-ROS levels, and repressed Mfn2 and HO-1 expression. Therefore, we conclude, THF relieves DOX-induced cardiotoxicity and improves mitochondrial function by activating Akt-mediated Mfn2 and HO-1 pathways. This finding provides promising therapeutic insights for DOX-induced cardiac dysfunction.


Cardiotoxicity , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Cardiotoxicity/metabolism , Signal Transduction , Doxorubicin/toxicity , Myocytes, Cardiac/metabolism , Mitochondria/metabolism , Apoptosis , Oxidative Stress
15.
mBio ; 14(5): e0097723, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37754565

IMPORTANCE: Aspergillus flavus is a model filamentous fungus that can produce aflatoxins when it infects agricultural crops. This study evaluated the protein phosphatase 2C (PP2C) family as a potential drug target with important physiological functions and pathological significance in A. flavus. We found that two redundant PP2C phosphatases, Ptc1 and Ptc2, regulate conidia development, aflatoxin synthesis, autophagic vesicle formation, and seed infection. The target protein phosphoglycerate kinase 1 (PGK1) that interacts with Ptc1 and Ptc2 is essential to regulate metabolism and the autophagy process. Furthermore, Ptc1 and Ptc2 regulate the phosphorylation level of PGK1 S203, which is important for influencing aflatoxin synthesis. Our results provide a potential target for interdicting the toxicity of A. flavus.


Aflatoxins , Aspergillus flavus , Aspergillus flavus/metabolism , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism , Phosphoric Monoester Hydrolases/metabolism , Aflatoxins/metabolism , Autophagy
16.
Insects ; 14(9)2023 Aug 24.
Article En | MEDLINE | ID: mdl-37754693

Osthole, the dominant bioactive constituent in the Cnidium monnieri, has shown acute pesticidal activities. However, its detailed toxicity, antifeedant, and oviposition preference effects against agricultural pests have not been fully understood, limiting its practical use. This study aimed to investigate the contact toxicity, antifeedant activity, and oviposition preference of osthole against three agricultural pests (Tetranychus urticae, Myzus persicae, and Bactrocera dorsalis). Our results showed that the Cnidium monnieri (L.) Cusson (CMC) has a high osthole content of 11.4 mg/g. Osthole exhibited a higher level of acute toxicity against the T. urticae to four other coumarins found in CMC. It showed significant pesticidal activity against T. urticae and M. persicae first-instar nymphs and adults in a dose-dependent manner but not against B. dorsalis adults. Osthole exposure reduced the fecundity and prolonged the developmental time of the T. urticae and M. persicae. Leaf choice bioassays revealed potent antifeedant activity in the T. urticae and M. persicae. Furthermore, the female B. dorsalis showed a distinct preference for laying eggs in mango juice with 0.02 mg/mL osthole at 48 h, a preference that persisted at 96 h. These results provide valuable insights into the toxicity, repellent activity, and attractant activity of osthole, thereby providing valuable insights into its potential efficacy in pest control.

17.
Sci Adv ; 9(39): eadi7238, 2023 09 29.
Article En | MEDLINE | ID: mdl-37774018

H3K4 trimethylation (H3K4me3) is a conserved histone modification catalyzed by histone methyltransferase Set1, and its dysregulation is associated with pathologies. Here, we show that Set1 is intrinsically unstable and elucidate how its protein levels are controlled within cell cycle and during gene transcription. Specifically, Set1 contains a destruction box (D-box) that is recognized by E3 ligase APC/CCdh1 and degraded by the ubiquitin-proteasome pathway. Cla4 phosphorylates serine 228 (S228) within Set1 D-box, which inhibits APC/CCdh1-mediated Set1 proteolysis. During gene transcription, PAF complex facilitates Cla4 to phosphorylate Set1-S228 and protect chromatin-bound Set1 from degradation. By modulating Set1 stability and its binding to chromatin, Cla4 and APC/CCdh1 control H3K4me3 levels, which then regulate gene transcription, cell cycle progression, and chronological aging. In addition, there are 141 proteins containing the D-box that can be potentially phosphorylated by Cla4 to prevent their degradation by APC/CCdh1. We addressed the long-standing question about how Set1 stability is controlled and uncovered a new mechanism to regulate protein stability.


Cell Cycle Proteins , Saccharomyces cerevisiae Proteins , Cell Cycle , Cell Cycle Proteins/metabolism , Chromatin , Histone Methyltransferases , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Cdh1 Proteins
18.
Chemosphere ; 341: 140031, 2023 Nov.
Article En | MEDLINE | ID: mdl-37660785

6:2 fluorotonic carboxylic acid (6:2 FTCA), a novel substitute for perfluorooctanoic acid (PFOA), is being used gradually in industrial production such as coatings or processing aids, and its detection rate in the aqueous environment is increasing year by year, posing a potential safety risk to aquatic systems and public health. However, limited information is available on the effects and mechanism of 6:2 FTCA. Therefore, this study was conducted to understand better the neuroendocrine effects of early exposure to 6:2 FTCA and the underlying mechanisms on zebrafish. In this study, zebrafish embryos were treated to varied doses of 6:2 FTCA (0, 0.08 µg/mL, 0.8 µg/mL and 8 µg/mL) at 4 h post-fertilization (hpf) for a duration of six days, which exhibited a pronounced inhibition of early growth and induced a disorganized swim pattern characterized by reduced total swim distance and average swim speed. Simultaneously, the thyroid development of zebrafish larvae was partially hindered, accompanied by decreased T3 levels, altered genes associated with the expression of thyroid hormone synthesis, transformation and transportation and neurotransmitters associated with tryptophan and tyrosine metabolic pathways. Molecular docking results showed that 6:2 FTCA has a robust binding energy with the thyroid hormone receptor (TRß). Moreover, exogenous T3 supplementation can partially restore the adverse outcomes. Our findings indicated that 6:2 FTCA acts as a thyroid endocrine disruptor and can induce neuroendocrine toxic effects. Furthermore, our results show that targeting TRß may be a potentially therapeutic strategy for 6:2 FTCA-induced neuroendocrine disrupting effects.


Thyroid Hormones , Zebrafish , Animals , Molecular Docking Simulation , Thyroid Gland , Receptors, Thyroid Hormone
19.
Front Mol Neurosci ; 16: 1182005, 2023.
Article En | MEDLINE | ID: mdl-37602193

Objective: This study aims to explore whether interferon-induced transmembrane protein 3 (IFITM3) is involved in recombinant human brain natriuretic peptide (rhBNP)-mediated effects on sepsis-induced cognitive dysfunction in mice. Methods: The cellular localization and expression level of IFITM3 in the hippocampus were detected. The IFITM3 overexpression was achieved using an intracranial stereotactic system to inject an adeno-associated virus into the hippocampal CA1 region of mice. Field experiments, an elevated plus maze, and conditioned fear memory tests assessed the cognitive impairment in rhBNP-treated septic mice. Finally, in the hippocampus of septic mice, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining and Immunoblot were used to detect changes in the protein expression of cleaved Caspase-8 and cleaved Caspase-3 in apoptosis-related pathways, and toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB) p65 in inflammatory pathways. Results: Fourteen days after cecal ligation and puncture (CLP) surgery, IFITM3 localized in the plasma membrane and cytoplasm of the astrocytes in the hippocampus of septic mice, partially attached to the perivascular and neuronal surfaces, but not expressed in the microglia. The expression of IFITM3 was increased in the astrocytes and neurons in the hippocampus of septic mice, which was selectively inhibited by the administration of rhBNP. Overexpression of IFITM3 resulted in elevated anxiety levels and long-term learning and memory dysfunction, completely abolished the therapeutic effect of rhBNP on cognitive impairment in septic mice, and induced an increase in the number of neuronal apoptosis in the hippocampal CA1 region. The expression levels of cleaved Caspase-3 and cleaved Caspase-8 proteins were significantly increased in the hippocampus, but the expression levels of TLR4 and NF-κB p65 were not increased. Conclusion: The activation of IFITM3 may be a potential new target for treating sepsis-associated encephalopathy (SAE), and it may be one of the key anti-apoptotic mechanisms in rhBNP exerting its therapeutic effect, providing new insight into the clinical treatment of SAE patients.

20.
PeerJ ; 11: e15811, 2023.
Article En | MEDLINE | ID: mdl-37576495

Background: The raising trend of cultivation of Bacillus thuringiensis (Bt)-transgenic cotton is faced with a new challenge what effects on the growth and yield of Bt cotton under elevated CO2. Methods: Rhizobacteria is the significant biological regulator to increase environmental suitability and ameliorate soil-nitrogen utilization efficiency of crops, especially Bt cotton. Pot-culture experiments investigated the effects on the yield and fiber quality components of Bt cotton (transgenic Line SCRC 37) inoculated with Azotobacter chroococcum (AC) under elevated CO2. Results: The findings indicated that the inoculation of azotobacter significantly improved the yield and fiber quality components of Bt cotton, the elevated CO2 significantly increased the soil density of A. chroococcum and the partial yield indexes (as cottonweightper 20 bolls, lint yield per 20 bolls and boll number per plant), and non-significant decrease the fiber quality components of Bt cotton except uniform. Discussion: Overall results obviously depicted that the inoculation of azotobacter and the elevated CO2 had positive effects on the yield and fiber quality components of Bt cotton. Presumably, azotobacter inoculation can be used to stimulate plant soil-nitrogen uptake and promote plant growth for Bt cotton under elevated CO2 in the future.


Azotobacter , Bacillus thuringiensis , Carbon Dioxide , Azotobacter/genetics , Soil , Gossypium/genetics , Nitrogen
...