Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
New Phytol ; 243(3): 936-950, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38831647

ABSTRACT

Glycosyltransferases (GTs) are enzymes that transfer sugars to various targets. They play important roles in diverse biological processes, including photosynthesis, cell motility, exopolysaccharide biosynthesis, and lipid metabolism; however, their involvement in regulating carbon metabolism in Synechocystis sp. PCC 6803 has not been reported. We identified a novel GT protein, Slr1064, involved in carbon metabolism. The effect of slr1064 deletion on the growth of Synechocystis cells and functional mechanisms of Slr1064 on carbon metabolism were thoroughly investigated through physiological, biochemistry, proteomic, and metabolic analyses. We found that this GT, which is mainly distributed in the membrane compartment, is essential for the growth of Synechocystis under heterotrophic and mixotrophic conditions, but not under autotrophic conditions. The deletion of slr1064 hampers the turnover rate of Gap2 under mixotrophic conditions and disrupts the assembly of the PRK/GAPDH/CP12 complex under dark culture conditions. Additionally, UDP-GlcNAc, the pivotal metabolite responsible for the O-GlcNAc modification of GAPDH, is downregulated in the Δslr1064. Our work provides new insights into the role of GTs in carbon metabolism in Synechocystis and elucidate the mechanism by which carbon metabolism is regulated in this important model organism.


Subject(s)
Bacterial Proteins , Carbon , Glycosyltransferases , Synechocystis , Uridine Diphosphate N-Acetylglucosamine , Synechocystis/metabolism , Synechocystis/genetics , Synechocystis/growth & development , Carbon/metabolism , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Uridine Diphosphate N-Acetylglucosamine/metabolism , Gene Expression Regulation, Bacterial , Gene Deletion
2.
Cancer Med ; 13(11): e7364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847084

ABSTRACT

PURPOSE: Lung cancer (LC) and breast cancer (BC) are the most common causes of brain metastases (BMs). Time from primary diagnosis to BM (TPDBM) refers to the time interval between initial LC or BC diagnosis and development of BM. This research aims to identify clinical, molecular, and therapeutic risk factors associated with shorter TPDBM. METHODS: We retrospectively reviewed all diagnosed LC and BC patients with BM at Harbin Medical University Cancer Hospital from 2016 to 2020. A total of 570 patients with LC brain metastasis (LCBM) and 173 patients with breast cancer brain metastasis (BCBM) patients who met the inclusion criteria were enrolled for further analysis. BM free survival time curves were generated using Kaplan-Meier analyses. Univariate and multivariate Cox regression analyses were applied to identify risk factors associated with earlier development of BM in LC and BC, respectively. RESULTS: The median TPDBM was 5.3 months in LC and 44.4 months in BC. In multivariate analysis, clinical stage IV and M1 stage were independent risk factors for early development of LCBM. LC patients who received chemotherapy, targeted therapy, pulmonary radiotherapy, and pulmonary surgery had longer TPDBM. For BC patients, age ≥ 50 years, Ki67 ≥ 0.3, HER2 positive or triple-negative breast cancer subtype, advanced N stage, and no mastectomy were correlated with shorter TPDBM. CONCLUSIONS: This single-institutional study helps identify patients who have a high risk of developing BM early. For these patients, early detection and intervention could have clinical benefits.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Lung Neoplasms , Humans , Female , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Brain Neoplasms/secondary , Brain Neoplasms/therapy , Brain Neoplasms/diagnosis , Middle Aged , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Retrospective Studies , Risk Factors , Aged , Male , Time Factors , Adult , Neoplasm Staging
3.
Front Neurol ; 15: 1383980, 2024.
Article in English | MEDLINE | ID: mdl-38863508

ABSTRACT

Objective: Spinal schwannomas are the most common intradural extramedullary tumors, and their complete removal is recommended to avoid tumor recurrence. Although laminoplasty provides a sufficient window for tumor resection, this approach may increase tissue trauma and cause postoperative instability compared with unilateral hemilaminectomy. This study aimed to compare the efficacy and clinical outcomes of the two approaches. Materials and methods: We included 100 consecutive patients who underwent unilateral hemilaminectomy or laminoplasty for resection of spinal schwannomas between January 2015 and February 2023. The patients' baseline characteristics, including sex, age, tumor location, percentage of tumor occupying the intradural space, operative time, postoperative length of hospital stay, intraoperative bleeding volume, visual analog scale score, and neurologic results, were retrospectively analyzed. Results: Hemilaminectomy patients who underwent unilateral hemilaminectomy had smaller intraoperative bleeding (p = 0.020) volume, shorter operative time (p = 0.012), and shorter postoperative length of hospital stay (p = 0.044). The mean VAS scores at the last follow-up were similar between the two groups (p = 0.658). Although the postoperative McCormick and Karnofsky Performance scores were not significantly different between the laminoplasty and unilateral hemilaminectomy groups (p = 0.687 and p = 0.649, respectively), there was a statistically significant improvement based on postoperative neurological results compared to preoperative neurological results for both groups. The incidence of postoperative complications was 5% and 11.7% in the unilateral hemilaminectomy and laminoplasty groups, respectively (p = 0.308). Conclusions: For spinal schwannoma resection, unilateral hemilaminectomy has more advantages than laminoplasty, including a shorter postoperative hospital stay, faster procedure, and less intraoperative blood loss while achieving the same desired result.

4.
Phytomedicine ; 130: 155642, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38759315

ABSTRACT

BACKGROUND: Huangkui capsule (HKC), as an ethanol extract of Abelmoschus manihot (L.), has a significant efficacy in treatment of the patients with diabetic kidney disease (DKD). The bioactive ingredients of HKC mainly include the flavonoids such as rutin, hyperoside, hibifolin, isoquercetin, myricetin, quercetin and quercetin-3-O-robinobioside. PURPOSE: To explore the molecular mechanisms of A. manihot in treatment of DKD. STUDY DESIGN: A single-cell RNA sequencing analysis of kidneys in db/db mice with and without HKC administration. METHODS: Urinary biochemical and histopathological examination in C57BL/6 and db/db mice of DKD and HKC groups was done. Single-cell RNA sequencing pipeline was then performed. The regulatory mechanisms of seven flavonoids in HKC were revealed by cell communication, prediction of transcription factor regulatory network, and molecular docking. RESULTS: By constructing ligand-receptor regulatory network and performing molecular docking between 75 receptors with different activities and seven flavonoids. 11 key receptors in 4 cell types (segment 3 proximal convoluted tubular cell, ascending limbs of the loop of Henle, distal convoluted tubule, and T cell) in kidneys were found to be directly interacted with HKC. The interactions regulated 8 downstream regulons. The docking receptors in T cell led to transcriptional event differences in the regulons such as Cebpb, Rel, Tbx21 and Klf2 and consequently affected the activation, differentiation, and infiltration of T cell, while the receptors Tgfbr1 and Ldlr in stromal cells of kidneys were closely associated with the downstream transcriptional events of renal injury and proteinuria in DKD. CONCLUSION: The current study provides novel information of the key receptors and regulons in renal cells for a better understanding of the cell type specific molecular mechanisms of A. manihot in treatment of DKD.


Subject(s)
Abelmoschus , Diabetic Nephropathies , Flavonoids , Mice, Inbred C57BL , Molecular Docking Simulation , Abelmoschus/chemistry , Diabetic Nephropathies/drug therapy , Animals , Flavonoids/pharmacology , Male , Mice , Kidney/drug effects , Single-Cell Analysis , Receptor, Transforming Growth Factor-beta Type I/metabolism , Gene Expression Regulation/drug effects , Drugs, Chinese Herbal/pharmacology , Plant Extracts/pharmacology
5.
Sensors (Basel) ; 24(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732914

ABSTRACT

Flexible sensors have gained popularity in recent years. This study proposes a novel structure of a resistive four-channel tactile sensor capable of distinguishing the magnitude and direction of normal forces acting on its sensing surface. The sensor uses EcoflexTM00-30 as the substrate and EGaIn alloy as the conductive filler, featuring four mutually perpendicular and curved channels to enhance the sensor's dynamic responsiveness. Experiments and simulations show that the sensor has a large dynamic range (31.25-100 mΩ), high precision (deviation of repeated pressing below 0.1%), linearity (R2 above 0.97), fast response/recovery time (0.2 s/0.15 s), and robust stability (with fluctuations below 0.9%). This work uses an underactuated robotic hand equipped with a four-channel tactile sensor to grasp various objects. The sensor data collected effectively predicts the shapes of the objects grasped. Furthermore, the four-channel tactile sensor proposed in this work may be employed in smart wearables, medical diagnostics, and other industries.

6.
Proteomics ; : e2300222, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581091

ABSTRACT

The group 2 σ factor for RNA polymerase SigE plays important role in regulating central carbon metabolism in cyanobacteria. However, the regulation of SigE for these pathways at a proteome level remains unknown. Using a sigE-deficient strain (ΔsigE) of Synechocystis sp. PCC 6803 and quantitative proteomics, we found that SigE depletion induces differential protein expression for sugar catabolic pathways including glycolysis, oxidative pentose phosphate (OPP) pathway, and glycogen catabolism. Two glycogen debranching enzyme homologues Slr1857 and Slr0237 are found differentially expressed in ΔsigE. Glycogen determination indicated that Δslr0237 accumulated glycogen under photomixotrophic condition but was unable to utilize these reserves in the dark, whereas Δslr1857 accumulates and utilizes glycogen in a similar way as the WT strain does in the same condition. These results suggest that Slr0237 plays the major role as the glycogen debranching enzyme in Synechocystis.

7.
J Phys Chem Lett ; 15(17): 4593-4601, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38639727

ABSTRACT

Graphdiyne (GDY) is an appealing two-dimensional carbon material, but the on-surface synthesis of a single layer remains challenging. Demetalation of well-crystalline metal acetylide networks, though in its infancy, provides a new avenue to on-surface synthesized GDY substructures. In spite of the synthetic efforts and theoretical concerns, there are few reports steeped in elaborate characterization of the electronic influence of metalation. In this context, we focused on the surface supported Au-bis-acetylide network, which underwent demetalation after further annealing to form hydrogen-substituted GDY. We made a comprehensive study on the geometric structure and electronic structure and the corresponding demetalized structure on Au(111) through STM, noncontact atomic force microscopy (nc-AFM), scanning tunneling spectroscopy (STS), and density functional theory (DFT) simulations. The bandgap of the Au-bis-acetylide network on Au(111) is measured to be 2.7 eV, while the bandgap of a fully demetalized Au-bis-acetylide network is estimated to be about 4.1 eV. Our findings reveal that the intercalated Au adatoms are positioned closer to the metal surface compared with the organic skeletons, facilitating electronic hybridization between the surface state and unoccupied frontier molecular orbitals of organic components. This leads to an extended conjugation through Au-bis-acetylene bonds, resulting in a reduced bandgap.

8.
Biomed Pharmacother ; 169: 115899, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37984306

ABSTRACT

As a traditional Chinese medicine, Huangkui capsule (HKC) has been used to treat patients with kidney diseases, including diabetic nephropathy (DN). We have recently demonstrated that HKC could re-regulate the activities of solute carriers (SLC)s in proximal and distal convoluted tubules of kidneys in regression of the development of DN. The main active chemical constituents of HKC are the flavones of Abelmoschus manihot (L.). The current study aims to further evaluate the efficacy of total flavones of A. manihot (TFA) in the regression of DN by analyzing SLC activities in proximal and distal convoluted tubules of kidneys. TFA (0.076 g/kg/d) or vehicle was administered in db/db mice, the animal model of type 2 diabetes and DN, daily via oral gavage for four weeks. Blood glucose levels and urinary albumin-to-creatinine ratio (UACR) were measured and used for the determination of T2D and DN. Ten SLCs, including slc2a2, slc4A1, slc5a2, slc5A3, slc5a8, slc6a20, slc27a2, slc12a3, slc34a1 and slc38a2 were highly expressed in proximal and distinct convoluted tubules of kidneys. Their expression at mRNA and protein levels before and after TFA treatment were analyzed with real-time RT-PCR and immunohistochemistry. Data showed that UACR in the db/db mice after TFA treatment was significantly decreased. Compared with the group of non-diabetic control, slc2a2, slc4A1, slc5a2, slc5A3, slc5a8, slc6a20, slc27a2, slc12a3, slc34a1 and slc38a2 in the group of DN were down-regulated but up-regulated after TFA treatment. Further analyses of whole kidney sections indicated that the numbers and structures of the nephron in db/db mice was increased and improved after TFA treatment. Thereby, the current study provides further evidence that the flavones in A. manihot have pharmacological effects on the treatment of DN by improving the biological function of SLCs in kidneys.


Subject(s)
Abelmoschus , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Flavones , Humans , Rats , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Abelmoschus/chemistry , Flavones/pharmacology , Flavones/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Rats, Sprague-Dawley , Epithelial Cells
9.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4137-4146, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802782

ABSTRACT

Previous studies have shown that high blood glucose-induced chronic microinflammation can cause inflammatory podocyte injury in patients with diabetic kidney disease(DKD). Therein, necroptosis is a new form of podocyte death that is closely associated with renal fibrosis(RF). To explore the effects and mechanisms in vivo of total flavones of Abelmoschus manihot(TFA), an extract from traditional Chinese herbal medicine Abelmoschus manihot for treating kidney diseases, on podocyte necroptosis and RF in DKD, and to further reveal its scientific connotation with multi-pathway and multi-target, the authors randomly divided all rats into four groups: a namely normal group, a model group, a TFA group and a rapamycin(RAP) group. After the modified DKD rat models were successfully established, four group rats were given double-distilled water, TFA suspension and RAP suspension, respectively by gavage every day. At the end of the 4th week of drug treatment, all rats were sacrificed, and the samples of their urine, blood and kidneys were collected. And then, the various indicators related to podocyte necroptosis and RF in the DKD model rats were observed, detected and analyzed, respectively. The results indicated that, general condition, body weight(BW), serum creatinine(Scr), urinary albumin(UAlb), and kidney hypertrophy index(KHI) in these modified DKD model rats were both improved by TFA and RAP. Indicators of RF, including glomerular histomorphological characteristics, fibronectin(FN) and collagen type Ⅰ(collagen Ⅰ) staining extent in glomeruli, as well as the protein expression levels of FN, collagen Ⅰ, transforming growth factor-ß1(TGF-ß1) and Smad2/3 in the kidneys were improved respectively by TFA and RAP. Podocyte damage, including foot process form and the protein expression levels of podocin and CD2AP in the kidneys was improved by TFA and RAP. In addition, tumor necrosis factor-α(TNF-α)-mediated podocyte necroptosis in the kidneys, including the morphological characteristics of podocyte necroptosis, the extent and levels of the protein expression of TNF-α and phosphorylated mixed lineage kinase domain like pseudokinase(p-MLKL) was improved respectively by TFA and RAP. Among them, RAP had the better effect on p-MLKL. More importantly, the activation of the receptor interacting serine/threonine protein kinase 1(RIPK1)/RIPK3/MLKL signaling axis in the kidneys, including the expression levels of its key signaling molecules, such as phosphorylated receptor interacting serine/threonine protein kinase 1(p-RIPK1), p-RIPK3, p-MLKL and cysteinyl aspartate specific proteinase-8(caspase-8) was improved respectively by TFA and RAP. Among them, the effect of TFA on p-RIPK1 was superior. On the whole, in this study, the authors demonstrated that TFA alleviates podocyte necroptosis and RF in DKD through inhibiting the activation of the TNF-α-mediated RIPK1/RIPK3/MLKL signaling axis in diabetic kidneys. The authors' findings provide new pharmacological evidence to reveal the scientific connotation of TFA in treating RF in DKD in more depth.


Subject(s)
Abelmoschus , Diabetes Mellitus , Diabetic Nephropathies , Flavones , Podocytes , Humans , Rats , Animals , Diabetic Nephropathies/drug therapy , Flavones/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Fibrosis , Threonine/pharmacology , Collagen/metabolism , Serine/pharmacology , Diabetes Mellitus/drug therapy
10.
New Phytol ; 240(2): 676-693, 2023 10.
Article in English | MEDLINE | ID: mdl-37545368

ABSTRACT

Reactive carbonyl species (RCS) derived from lipid peroxides can act as critical damage or signaling mediators downstream of reactive oxygen species by modifying target proteins. However, their biological effects and underlying mechanisms remain largely unknown in plants. Here, we have uncovered the mechanism by which the RCS 4-hydroxy-(E)-2-nonenal (HNE) participates in photosystem II (PSII) repair cycle of chloroplasts, a crucial process for maintaining PSII activity under high and changing light conditions. High Light Sensitive 1 (HLT1) is a potential NADPH-dependent reductase in chloroplasts. Deficiency of HLT1 had no impact on the growth of Arabidopsis plants under normal light conditions but increased sensitivity to high light, which resulted from a defective PSII repair cycle. In hlt1 plants, the accumulation of HNE-modified D1 subunit of PSII was observed, which did not affect D1 degradation but hampered the dimerization of repaired PSII monomers and reassembly of PSII supercomplexes on grana stacks. HLT1 is conserved in all photosynthetic organisms and has functions in overall growth and plant fitness in both Arabidopsis and rice under naturally challenging field conditions. Our work provides the mechanistic basis underlying RCS scavenging in light acclimation and suggests a potential strategy to improve plant productivity by manipulating RCS signaling in chloroplasts.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Thylakoids/metabolism , Photosystem II Protein Complex/metabolism , Acclimatization , Light
11.
Front Pharmacol ; 14: 1215996, 2023.
Article in English | MEDLINE | ID: mdl-37587982

ABSTRACT

Introduction: As a traditional Chinese medicine, Abelmoschus manihot (L.) in the form of Huangkui (HK) capsule has been used as a medication for kidney diseases, including diabetic nephropathy (DN), in China. The most significant effect of HK capsule treatment in kidney diseases is the reduction of albuminuria and proteinuria. To evaluate the efficacy of HK capsule in the regression of DN, in the current study, we analyzed the biomarkers in the glomerulus and proximal and distal convoluted tubules in the kidneys of db/db mice, the animal model for type 2 diabetes and DN. Methods: Huangkui capsules (0.84 g/kg/d) or vehicle were administered daily via oral gavage for 4 weeks in db/db mice. Urinary albumin-to-creatinine ratio and blood glucose levels were measured during the whole experimental period. Five biomarkers in the glomerulus and proximal and distal convoluted tubules in the kidneys were selected, namely, col4a3, slc5a2, slc34a1, slc12a3, and slc4a1, and their activities at mRNA and protein levels before and after HK capsule treatment were analyzed by real-time RT-PCR and immunohistochemistry. Result and discussion: After HK capsule treatment for 4 weeks, the urinary albumin-to-creatinine ratio in db/db mice was found to be significantly decreased. The activities of col4a3, slc5a2, slc34a1, slc12a3, and slc4a1 in the kidneys were upregulated in db/db mice prior to the treatment but downregulated after HK capsule treatment. Further analyses of the fields of whole kidney tissue sections demonstrated that the number of nephrons in the kidneys of db/db mice with HK capsule treatment was higher than that in the kidneys of db/db mice without HK capsule treatment. Thereby, the current study provides experimental evidence confirming the medical efficacy of A. manihot in the reduction of albuminuria and proteinuria, suggesting that A. manihot may have pharmacological efficacy in the regression of the development of type 2 diabetes-DN.

12.
Mol Cell Proteomics ; 22(7): 100582, 2023 07.
Article in English | MEDLINE | ID: mdl-37225018

ABSTRACT

Carbon metabolism is central to photosynthetic organisms and involves the coordinated operation and regulation of numerous proteins. In cyanobacteria, proteins involved in carbon metabolism are regulated by multiple regulators including the RNA polymerase sigma factor SigE, the histidine kinases Hik8, Hik31 and its plasmid-borne paralog Slr6041, and the response regulator Rre37. To understand the specificity and the cross-talk of such regulations, we simultaneously and quantitatively compared the proteomes of the gene knockout mutants for the regulators. A number of proteins showing differential expression in one or more mutants were identified, including four proteins that are unanimously upregulated or downregulated in all five mutants. These represent the important nodes of the intricate and elegant regulatory network for carbon metabolism. Moreover, serine phosphorylation of PII, a key signaling protein sensing and regulating in vivo carbon/nitrogen (C/N) homeostasis through reversible phosphorylation, is massively increased with a concomitant significant decrease in glycogen content only in the hik8-knockout mutant, which also displays impaired dark viability. An unphosphorylatable PII S49A substitution restored the glycogen content and rescued the dark viability of the mutant. Together, our study not only establishes the quantitative relationship between the targets and the corresponding regulators and elucidated their specificity and cross-talk but also unveils that Hik8 regulates glycogen accumulation through negative regulation of PII phosphorylation, providing the first line of evidence that links the two-component system with PII-mediated signal transduction and implicates them in the regulation of carbon metabolism.


Subject(s)
Carbon , Synechocystis , Phosphorylation , Carbon/metabolism , Proteomics , Synechocystis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glycogen/metabolism , Nitrogen , Gene Expression Regulation, Bacterial
13.
Acta Neurol Belg ; 123(4): 1381-1393, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37043115

ABSTRACT

BACKGROUND: Automated segmentation of hippocampal and amygdala subfields could improve classification accuracy of Mild Cognitive Impairments (MCI) and Alzheimer's Disease (AD) individuals. METHODS: We applied T1-weighted magnetic resonance imaging (MRI) for 21 AD, 39 MCI and 32 normal control (NC) participants at 3-Tesla MRI. Twelve hippocampal subfields and 9 amygdala subfields in each hemisphere were analyzed using FreeSurfer 6.0. RESULTS: Smaller volumes were observed in right/left whole hippocampus, right/left hippocampal tail, right/left subiculum, right Cornu ammonis 1(CA1), right/left molecular layer, right granule cell-molecular layer-dentate gyrus (GC-ML-DG), right CA4, right fimbria, right whole amygdala, right/left accessory basal, right anterior amygdala area, left central, left medial and right/left cortical nucleus of AD group compared to both MCI and NC groups (p < 0.001). The volumes of right presubiculum, right CA3, right hippocampus-amygdala-transition-area (HATA), right lateral, right basal, right central, right medial, right cortico-amygdaloid transition (CAT) and right paralaminar nucleus were significantly larger in NC than AD group (p ≤ 0.001), while the volumes of right subiculum, right CA1, right molecular layer, right whole hippocampus, right whole amygdala, right basal and right accessory basal were significantly larger in NC than MCI group (p ≤ 0.002). Trend analysis showed that most hippocampus and amygdala subfields have a trend of atrophy with the decline of cognitive function. Six core components were identified by the hierarchical clustering. The combined Receiver operating characteristic (ROC) analysis achieved the diagnostic performances (AUC: 0.81) in differentiating AD from MCI; (AUC: 0.79) in differentiating MCI from NC and (AUC: 0.97) in differentiating AD from NC. CONCLUSIONS: Volumetric differences of hippocampus and amygdala were at a finer subfields scale, and the volumes of right basal nucleus, left parasubiculum, left medial nucleus, left GC-ML-DG, left hippocampal fissure, and right fimbria can be employed as neuroimaging biomarkers to assist the clinical diagnosis of MCI and AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Temporal Lobe/pathology , Magnetic Resonance Imaging , Amygdala/diagnostic imaging , Amygdala/pathology
14.
J Proteome Res ; 22(4): 1255-1269, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36930737

ABSTRACT

Spatial proteome reorganization in response to a changing environment represents a different layer of adaptation mechanism in addition to differential expression of a subset of stress responsive genes in photosynthetic organisms. Profiling such reorganization events is critically important to extend our understanding how photosynthetic organisms adapt to adverse environments. Thus, we treated a unicellular photosynthetic model cyanobacterium, Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis), with five different types of abiotic stresses including nitrogen starvation, iron deficiency, cold, heat, and darkness, and systematically identified proteins showing stress-induced differential expression and/or redistribution between the membrane and the soluble fractions using a quantitative proteomics approach. A number of proteins showing such a redistribution in response to a single or multiple types of abiotic stresses were identified. These include 12 ribosomal proteins displaying unanimous cold-induced redistribution to the membrane and the protein FurA, a master regulator of iron acquisition, displaying iron deficiency- and nitrogen starvation-induced redistribution to the membrane. Such findings shed light on a novel regulatory mechanism underlying the corresponding stress responses, and establish the results in the present study as an important resource for future studies intended to understand how photosynthetic organisms cope with adverse environments.


Subject(s)
Iron Deficiencies , Synechocystis , Humans , Proteome/genetics , Proteome/metabolism , Stress, Physiological , Synechocystis/genetics , Synechocystis/metabolism , Nitrogen/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
15.
Phytomedicine ; 112: 154713, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36857970

ABSTRACT

BACKGROUND: Flowers of Abelmoschus manihot (L.) medic (AM) is a traditional Chinese medicine used to treat chronic nephritis, nephrotic syndrome, diabetic nephropathy, and colonic inflammation. PURPOSE: This study aimed to explore the influence of the total flavone of AM flowers (TFA) on acute ulcerative colitis (UC) and the potential underlying mechanism. METHODS: Efficacy of TFA (30, 60, 120 mg/kg) on UC was evaluated in a dextran sodium sulphate (DSS)-induced colonic inflammatory mouse model by analyzing disease activity index (DAI), histopathological score, colon length, and cytokine expression. Expression levels of critical adhesion molecules and nuclear factor kappa B (NF-κB) were examined by qRT-PCR, Western blotting, or immunofluorescence labeling. Myeloperoxidase activity was examined using ELISA. In vitro THP-1 adhesion assay was used to evaluate monocyte adhesion. RESULTS: TFA significantly reduced DAI score, prevented colon shortening, and ameliorated histological injuries of colons in DSS-treated mice. TFA inhibited the expression of cytokines (IL-1ß and TNF-α) and adhesion molecules (ICAM-1, VCAM-1, and MAdCAM-1) in colon tissues of DSS mice. In vitro studies on mesenteric arterial endothelial cells (MAECs) showed that TFA attenuated TNF-α-induced upregulation of ICAM-1, VCAM-1, and MAdCAM-1, as well as THP-1 cell adhesion to MAECs. TFA also suppressed the phosphorylation and nuclear translocation of NF-κB in MAECs. CONCLUSION: TFA efficaciously ameliorates UC possibly by inhibiting monocyte adhesion through blocking TNF-α-induced NF-κB activation, which in turn suppresses the upregulation of adhesive molecules in colon endothelial cells. Inhibiting the expression of adhesion molecule in MAECs may represent a useful strategy for therapeutic development to treat UC, with TFA being a safe and efficacious therapeutic agent.


Subject(s)
Abelmoschus , Colitis, Ulcerative , Flavones , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Intercellular Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1 , Dextrans , Endothelial Cells , NF-kappa B , Tumor Necrosis Factor-alpha , Flowers
16.
J Am Chem Soc ; 145(8): 4545-4552, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36794794

ABSTRACT

On-surface acetylenic homocoupling has been proposed to construct carbon nanostructures featuring sp hybridization. However, the efficiency of linear acetylenic coupling is far from satisfactory, often resulting in undesired enyne products or cyclotrimerization products due to the lack of strategies to enhance chemical selectivity. Herein, we inspect the acetylenic homocoupling reaction of polarized terminal alkynes (TAs) on Au(111) with bond-resolved scanning probe microscopy. The replacement of benzene with pyridine moieties significantly prohibits the cyclotrimerization pathway and facilitates the linear coupling to produce well-aligned N-doped graphdiyne nanowires. Combined with density functional theory calculations, we reveal that the pyridinic nitrogen modification substantially differentiates the coupling motifs at the initial C-C coupling stage (head-to-head vs head-to-tail), which is decisive for the preference of linear coupling over cyclotrimerization.

17.
Microb Biotechnol ; 16(4): 813-826, 2023 04.
Article in English | MEDLINE | ID: mdl-36583468

ABSTRACT

Huangkui capsule (HKC), a traditional Chinese medicine, has been used for medication of kidney diseases, including diabetic nephropathy (DN). The current study aimed to evaluate the effects of HKC in the modulation of gut microbiota and the amelioration of metabolite levels by using non-obese diabetes (NOD) mice with DN. The microbiota from three parts of intestines (duodenum, ileum and colon) in NOD mice with and without HKC treatment were analysed using 16S rDNA sequencing techniques. Untargeted metabolomics in plasma of NOD mice were analysed with liquid mass spectrometry. Results showed that HKC administration ameliorated DN in NOD mice and the flora in duodenum were more sensitive to HKC intervention, while the flora in colon had more effects on metabolism. The bacterial genera such as Faecalitalea and Muribaculum significantly increased and negatively correlated with most of the altered metabolites after HKC treatment, while Phyllobacterium, Weissella and Akkermansia showed an opposite trend. The plasma metabolites, mainly including amino acids and fatty acids such as methionine sulfoxide, BCAAs and cis-7-Hexadecenoic acid, exhibited a distinct return to normal after HKC treatment. The current study thereby provides experimental evidence suggesting that HKC may modulate gut microbiota and subsequently ameliorate the metabolite levels in DN.


Subject(s)
Abelmoschus , Diabetes Mellitus , Diabetic Nephropathies , Gastrointestinal Microbiome , Rats , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Kidney , Mice, Inbred NOD , Abelmoschus/chemistry , Rats, Sprague-Dawley , Diabetes Mellitus/metabolism
18.
Front Pharmacol ; 14: 1290868, 2023.
Article in English | MEDLINE | ID: mdl-38313075

ABSTRACT

Introduction: Huangkui capsule (HKC) is made from the ethanol extract of Abelmoschus manihot (L.) Medik [Malvaceae; abelmoschi corolla] and received approval from the China Food and Drug Administration (Z19990040) in 1999. Currently, HKC is used for treatment of the patients with diabetic nephropathy (DN) in China. The bioactive chemical constituents in HKC are total flavonoids of A. manihot (L.) Medik (TFA). The present study aims to identify the primary flavonoid metabolites in HKC and TFA and their metabolism fates in db/db mice, the animal model for the study of type 2 diabetes and DN. Methods: HKC (0.84 g/kg/d) and TFA (0.076 g/kg/d) or vehicle were respectively administered daily via oral gavage in db/db mice for 4 weeks. The metabolism fate of the main metabolites of HKC in serum, liver, kidney, heart, jejunum, colon, jejunal contents, colonic contents, and urine of db/db mice were analyzed with a comprehensive metabolite identification strategy. Results and Discussion: In db/db mice administered with HKC and TFA, 7 flavonoid prototypes and 38 metabolites were identified. The related metabolic pathways at Phases I and II reactions included dehydroxylation, deglycosylation, hydrogenation, methylation, glucuronidation, sulphation, and corresponding recombined reactions. Quercetin, isorhamnetin, quercetin sulphate, quercetin monoglucuronide, and isorhamnetin monoglucuronide presented a high exposure in the serum and kidney of db/db mice. Thereby, the present study provides a pharmacodynamic substance basis for better understanding the mechanism of A. manihot (L.) Medik for medication of DN.

19.
Mol Cell Proteomics ; 21(12): 100440, 2022 12.
Article in English | MEDLINE | ID: mdl-36356940

ABSTRACT

Ascorbate peroxidase (APEX)-based proximity labeling coupled with mass spectrometry has a great potential for spatiotemporal identification of proteins proximal to a protein complex of interest. Using this approach is feasible to define the proteome neighborhood of important protein complexes in a popular photosynthetic model cyanobacterium Synechocystis sp. PCC6803 (hereafter named as Synechocystis). To this end, we developed a robust workflow for APEX2-based proximity labeling in Synechocystis and used the workflow to identify proteins proximal to the photosystem II (PS II) oxygen evolution complex (OEC) through fusion APEX2 with a luminal OEC subunit, PsbO. In total, 38 integral membrane proteins (IMPs) and 93 luminal proteins were identified as proximal to the OEC. A significant portion of these proteins are involved in PS II assembly, maturation, and repair, while the majority of the rest were not previously implicated with PS II. The IMPs include subunits of PS II and cytochrome b6/f, but not of photosystem I (except for PsaL) and ATP synthases, suggesting that the latter two complexes are spatially separated from the OEC with a distance longer than the APEX2 labeling radius. Besides, the topologies of six IMPs were successfully predicted because their lumen-facing regions exclusively contain potential APEX2 labeling sites. The luminal proteins include 66 proteins with a predicted signal peptide and 57 proteins localized also in periplasm, providing important targets to study the regulation and selectivity of protein translocation. Together, we not only developed a robust workflow for the application of APEX2-based proximity labeling in Synechocystis and showcased the feasibility to define the neighborhood proteome of an important protein complex with a short radius but also discovered a set of the proteins that potentially interact with and regulate PS II structure and function.


Subject(s)
Photosystem II Protein Complex , Synechocystis , Photosystem II Protein Complex/metabolism , Proteome/metabolism , Oxygen/metabolism , Photosystem I Protein Complex/metabolism , Synechocystis/metabolism
20.
Exp Cell Res ; 421(1): 113374, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36206825

ABSTRACT

Renal fibrosis is a global health concern with limited curative treatment. Canonical transient receptor potential channel 6 (TRPC6), a nonselective cation channel, has been shown to regulate the renal fibrosis in murine models. However, the molecular mechanism is unclear. Fibroblast-myofibroblast transdifferentiation is one of the critical steps in the progression of renal fibrosis. In the present study, we demonstrate that transforming growth factor (TGF)-ß1 exposure significantly increases the TRPC6 expression in renal interstitial fibroblast NRK-49F cells. Pharmacological inhibition of TRPC6 and knockdown of Trpc6 by siRNA alleviate TGF-ß1-increased expression levels of α-smooth muscle actin (α-SMA) and collagen I, two key markers of myofibroblasts. Although direct activation of TRPC6 by 1-oleoyl-2-acetyl-sn-glycerol (OAG) does not affect the expression of α-SMA and collagen I, OAG potentiates TGF-ß1-induced fibroblast-myofibroblast transdifferentiation. Further study demonstrates that TGF-ß1 exposure increases the phosphorylation level of p38 and Yes-associated protein (YAP) translocation into the nuclei. Inhibition of p38 and YAP decreases TGF-ß1-enhanced TRPC6 and α-SMA expression. In conclusion, we demonstrate that TRPC6 is a key regulator of TGF-ß1-induced fibroblast-myofibroblast transdifferentiation and provides the mechanism of how TGF-ß1 exposure regulates TRPC6 expression in NRK-49F fibroblasts.


Subject(s)
Cell Transdifferentiation , Kidney Diseases , TRPC6 Cation Channel , Animals , Mice , Actins/metabolism , Cell Transdifferentiation/drug effects , Cell Transdifferentiation/physiology , Collagen Type I/metabolism , Fibroblasts/metabolism , Fibrosis , Kidney Diseases/metabolism , Myofibroblasts/metabolism , RNA, Small Interfering/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factors/metabolism , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/therapeutic use , TRPC6 Cation Channel/antagonists & inhibitors , TRPC6 Cation Channel/genetics , YAP-Signaling Proteins , Rats , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...