Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Genomics ; 116(5): 110899, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39047875

ABSTRACT

Nitrogen is one of the most essential elements for plant growth and development. In this study, the growth, physiology, and transcriptome of Toona sinensis (A. Juss) Roem seedlings were compared between low-nitrogen (LN) and normal-nitrogen (NN) conditions. These results indicate that LN stress adversely influences T. sinensis seedling growth. The activities of key enzymes related to nitrogen assimilation and phytohormone contents were altered by LN stress. A total of 2828 differentially expressed genes (DEGs) in roots and 1547 in leaves were identified between the LN and NN treatments. A differential enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways indicated that nitrogen and sugar metabolism, flavonoid biosynthesis, plant hormone signal transduction, and ABC transporters, were strongly affected by LN stress. In summary, this research provides information for further understanding the response of T. sinensis to LN stress.

2.
Cancer Immunol Immunother ; 73(5): 89, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38554156

ABSTRACT

BACKGROUND: Ezabenlimab (BI 754091) is a humanised monoclonal antibody targeting programmed cell death protein-1. We report results from open-label, dose-escalation/expansion, Phase I trials that evaluated the safety, maximum tolerated dose (MTD), pharmacokinetics and antitumour activity of ezabenlimab at the recommended Phase II dose in patients with selected advanced solid tumours. STUDY DESIGN: Study 1381.1 (NCT02952248) was conducted in Canada, the United Kingdom and the United States. Study 1381.4 (NCT03433898) was conducted in Japan. Study 1381.3 (NCT03780725) was conducted in the Netherlands. The primary endpoints were: number of patients experiencing dose-limiting toxicities (DLTs) in the first cycle (dose escalation parts), number of patients with DLTs during the entire treatment period and objective response (dose expansion part of Study 1381.1). RESULTS: Overall, 117 patients received ezabenlimab intravenously every 3 weeks (80 mg, n = 3; 240 mg, n = 111; 400 mg, n = 3). No DLTs were observed and the MTD was not reached. Fifty-eight patients (52.3%) had grade ≥ 3 adverse events, most commonly anaemia (10.8%) and fatigue (2.7%). In 111 assessed patients treated with ezabenlimab 240 mg, disease control rate was 56.8% and objective response rate was 16.2%. Three patients had complete response; at data cut-off (November 2021) one remained in response and was still receiving ongoing treatment (duration of response [DoR]: 906 days). Partial responses occurred across several tumour types; DoR ranged from 67 to 757 days. CONCLUSIONS: Ezabenlimab was well tolerated and associated with durable antitumour activity in multiple solid tumours, comparable to other immune checkpoint inhibitors in similar patient populations and treatment settings.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Canada , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology
3.
BMC Plant Biol ; 24(1): 27, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172667

ABSTRACT

BACKGROUND: Wheat, a crucial food crop in China, is highly vulnerable to drought stress throughout its growth and development. WRKY transcription factors (TFs), being one of the largest families of TFs, play a vital role in responding to various abiotic stresses in plants. RESULTS: Here, we cloned and characterized the TF TaWRKY31 isolated from wheat. This TF, belonging to the WRKY II family, contains a WRKYGQK amino acid sequence and a C2H2-type zinc finger structure. TaWRKY31 exhibits tissue-specific expression and demonstrates responsiveness to abiotic stresses in wheat. TaWRKY31 protein is localized in the nucleus and can function as a TF with transcription activating activity at the N-terminus. Results showed that the wheat plants with silenced strains (BSMV:TaWRKY31-1as and BSMV:TaWRKY31-2as) exhibited poor growth status and low relative water content when subjected to drought treatment. Moreover, the levels of O2·-, H2O2, and malondialdehyde (MDA) in the BSMV:TaWRKY31-induced wheat plants increased, while the activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) decreased. Compared to control plants, BSMV:TaWRKY31-induced wheat plants exhibited lower expression levels of TaSOD (Fe), TaPOD, TaCAT, TaDREB1, TaP5CS, TaNCED1, TaSnRK2, TaPP2C, and TaPYL5.Under stress or drought treatment conditions, the overexpression of TaWRKY31 in Arabidopsis resulted in decreased levels of H2O2 and MDA, as well as reduced stomatal opening and water loss. Furthermore, an increase in resistance oxidase activity, germination rate, and root length in the TaWRKY31 transgenic Arabidopsis was observed. Lastly, overexpression of TaWRKY31 in Arabidopsis resulted in higher the expression levels of AtNCED3, AtABA2, AtSnRK2.2, AtABI1, AtABF3, AtP5CS1, AtSOD (Cu/Zn), AtPOD, AtCAT, AtRD29A, AtRD29B, and AtDREB2A than in control plants. CONCLUSIONS: Our findings indicate that TaWRKY31 enhances drought resistance in plants by promoting the scavenging of reactive oxygen species, reducing stomatal opening, and increasing the expression levels of stress-related genes.


Subject(s)
Arabidopsis , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Droughts , Arabidopsis/metabolism , Triticum/genetics , Triticum/metabolism , Drought Resistance , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Water/metabolism
4.
Mol Carcinog ; 62(11): 1673-1685, 2023 11.
Article in English | MEDLINE | ID: mdl-37477518

ABSTRACT

Gastric cancer is one of the deadliest malignant tumors, and half of the patients develop recurrences or metastasis within 5 years after eradication therapy. Cancer stem cells (CSCs) are considered to be important in this progress. The sonic hedgehog (SHH) pathway plays an important role in the maintenance of gastric CSCs characteristics. The p63 proteins are vital transcription factors belonging to the p53 family, while their functions in regulating CSCs remain unclear. The preventive effects of dietary diallyl trisulfide (DATS) against human gastric cancer have been verified. However, whether DATS can target gastric CSCs are poorly understood. Here, we investigated the role of ΔNp63/SHH pathway in gastric CSCs and the inhibitory effect of DATS on gastric CSCs via ΔNp63/SHH pathway. We found that ΔNp63 was upregulated in serum-free medium cultured gastric tumorspheres compared with the parental cells. Overexpression of ΔNp63 elevated the self-renewal capacity and CSC markers' levels in gastric sphere-forming cells. Furthermore, we found that ΔNp63 directly bound to the promoter region of Gli1, the key transcriptional factor of SHH pathway, to enhance its expression and to activate SHH pathway. In addition, it was revealed that DATS effectively inhibited gastric CSC properties both in vitro and in vivo settings. Activation of SHH pathway attenuated the suppressive effects of DATS on the stemness of gastric cancer. Moreover, DATS suppression of gastric CSC properties was also diminished by ΔNp63 upregulation through SHH pathway activation. These findings illustrated the role of ΔNp63/SHH pathway in DATS inhibition of gastric cancer stemness. Taken together, the present study suggested for the first time that DATS inhibited gastric CSCs properties by ΔNp63/SHH pathway.


Subject(s)
Hedgehog Proteins , Stomach Neoplasms , Humans , Hedgehog Proteins/metabolism , Hedgehog Proteins/pharmacology , Stomach Neoplasms/pathology , Signal Transduction , Transcription Factors/metabolism , Neoplastic Stem Cells/pathology , Cell Line, Tumor
5.
Pain Ther ; 12(3): 707-722, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36928500

ABSTRACT

INTRODUCTION: This study was conducted to observe the effect of transcutaneous electrical acupoint stimulation (TEAS) on the postoperative sleep quality of patients undergoing gastrointestinal tumor surgery and to verify the possible mechanism. METHODS: Eighty-three patients were allocated to the TEAS or Sham group. Patients in the TEAS group received TEAS treatment (disperse-dense waves; frequency, 2/100 Hz) on bilateral Shenmen (HT7), Neiguan (PC6) and Zusanli (ST36) points for 30 min each time, total three times in the perioperative period. In the Sham group, electrodes were placed; however, no current was given. Sleep quality was assessed on the day before surgery (P1) and the first and third days after surgery (D1 and D3) using the Pittsburgh Sleep Quality Index (PSQI) and Athens Insomnia Scale (AIS). Postoperative pain was assessed using visual analog scale (VAS) 72 h postoperatively. The incidences of abdominal distension, dizziness, postoperative nausea and vomiting (PONV) and pulmonary complications were recorded. Serum levels of inflammatory cytokines and the expression of key factors of oxidative stress and key molecules of the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signal pathway were measured. RESULTS: TEAS ameliorated sleep quality at D1 and D3 (PSQI P < 0.05, AIS P < 0.05) and decreased postoperative pain as demonstrated by lower VAS scores compared to the Sham group (P < 0.05). The incidences of abdominal distension and PONV were also lower in the TEAS group. Markers of oxidative stress were increased (P < 0.05), and the serum concentration of interleukin-6 (IL-6) was significantly lower in the TEAS group. The key mediators of the Nrf2/ARE pathway were enhanced after TEAS. CONCLUSION: Perioperative TEAS improved postoperative sleep quality, reduced postoperative pain and alleviated postoperative adverse effects in patients undergoing laparoscopic gastrointestinal tumor surgery resection. This may be associated with activating Nrf2/ARE signal pathway and decreasing its inflammatory actions. TRIAL REGISTRATION: Chinese Clinical Trial Registry ( http://www.chictr.org.cn/index.aspx ), ChiCTR2100054971.

6.
Contemp Clin Trials ; 127: 107119, 2023 04.
Article in English | MEDLINE | ID: mdl-36804045

ABSTRACT

In a recent article, Zhang et al. proposed a 2-in-1 adaptive design to seamlessly expand a selected dose, based on efficacy compared to the control arm, from a Phase 2 trial to a Phase 3 trial for oncology drug development. In this article, we communicate a variation of the proposed design which selects a dose to expand based on direct comparison of high dose to low dose when both doses demonstrate promising efficacy compared to the control arm.


Subject(s)
Medical Oncology , Research Design , Humans , Drug Development , Dose-Response Relationship, Drug
7.
BMC Health Serv Res ; 22(1): 1238, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36207708

ABSTRACT

BACKGROUND: Pharmacy intravenous admixture service (PIVAS) center has emerged as an important department of hospital as it can improve occupational protection and ensure the safety and effectiveness of intravenous infusions. However, medication errors were considered to be a significant challenge in PIVAS, so information-intelligence technologies were introduced to optimize the management of PIVAS. Our article summarized the application of information-intelligence technologies in PIVAS of a large third-class A hospital in China, and provided an example for PIVAS in other hospitals at home and abroad. METHODS: Prescription-reviewing rules containing intravenous medications and infusion solution guideline were recorded in the database of prescription-cheking system. Drugs information were recorded in the PIVAS management system with special identification and warning labels to reduce intravenous infusion errors. Automatic labeling device was used to label the infusion bags, and the quality control program database of intelligent compounding robot for cytotoxic drugs was established ingeniously. Automatic sorting devices were applied for the third batch of finished infusion admixtures, and intelligent logistics robots were used to transport the infusion to the ward. RESULTS: After establishing and implementing of prescription-reviewing rules in the prescription-cheking system database, the number of prescriptions checked by pharmacists increased from 18 to 43 per minute. The success rate of intervention with irrational medical orders increased from 85.89% to 99.06% (P < 0.05). By introducing various intelligent devices, automatic labeling significantly enhanced work efficiency and reduced the error rate (P < 0.001). Furthermore, the use of intelligent intravenous compounding robots significantly reduced the risk of errors (P < 0.001). CONCLUSIONS: The application of information-intelligence technologies in PIVAS can improve work efficiency and reduce error risk. However, some intelligent devices have failed to achieve the expected effect in practical use, and further improvements are needed to meet the demands of PIVAS in the future.


Subject(s)
Pharmacy Service, Hospital , Pharmacy , Drug Compounding , Hospitals , Humans , Intelligence
8.
Int J Mol Sci ; 23(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36233327

ABSTRACT

WRKYs are one of the largest transcription factor (TF) families and play an important role in plant resistance to various stresses. TaWRKY133, a group I WRKY protein, responds to a variety of abiotic stresses, including PEG treatment. The TaWRKY133 protein is located in the nucleus of tobacco epidermal cells, and both its N-terminal and C-terminal domains exhibit transcriptional activation activity. Overexpression of TaWRKY133 reduced drought tolerance in Arabidopsis thaliana, as reflected by a lower germination rate, shorter roots, higher stomatal aperture, poorer growth and lower antioxidant enzyme activities under drought treatment. Moreover, expression levels of stress-related genes (DREB2A, RD29A, RD29B, ABF1, ABA2, ABI1, SOD (Cu/Zn), POD1 and CAT1) were downregulated in transgenic Arabidopsis under drought stress. Gene silencing of TaWRKY133 enhanced the drought tolerance of wheat, as reflected in better growth, higher antioxidant enzyme activities, and higher expression levels of stress-related genes including DREB1, DREB3, ABF, ERF3, SOD (Fe), POD, CAT and P5CS. In conclusion, these results suggest that TaWRKY133 might reduce drought tolerance in plants by regulating the expression of stress-related genes.


Subject(s)
Arabidopsis , Droughts , Antioxidants/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Stress, Physiological/genetics , Superoxide Dismutase/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
J Exp Clin Cancer Res ; 40(1): 266, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34429133

ABSTRACT

BACKGROUND: Recently, a variety of clinical trials have shown that apatinib, a small-molecule anti-angiogenic drug, exerts promising inhibitory effects on multiple solid tumors, including non-small cell lung cancer (NSCLC). However, the underlying molecular mechanism of apatinib on NSCLC remains unclear. METHODS: MTT, EdU, AO/EB staining, TUNEL staining, flow cytometry, colony formation assays were performed to investigate the effects of apatinib on cell proliferation, cell cycle distribution, apoptosis and cancer stem like properties. Wound healing and transwell assays were conducted to explore the role of apatinib on migration and invasion. The regulation of apatinib on VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling were detected. Furthermore, we collected conditioned medium (CM) from A549 and H1299 cells to stimulate phorbol myristate acetate (PMA)-activated THP-1 cells, and examined the effect of apatinib on PD-L1 expression in macrophages. The Jurkat T cells and NSCLC cells co-culture model was used to assess the effect of apatinib on T cells activation. Subcutaneous tumor formation models were established to evaluate the effects of apatinib in vivo. Histochemical, immunohistochemical staining and ELISA assay were used to examine the levels of signaling molecules in tumors. RESULTS: We showed that apatinib inhibited cell proliferation and promoted apoptosis in NSCLC cells in vitro. Apatinib induced cell cycle arrest at G1 phase and suppressed the expression of Cyclin D1 and CDK4. Moreover, apatinib upregulated Cleaved Caspase 3, Cleaved Caspase 9 and Bax, and downregulated Bcl-2 in NSCLC cells. The colony formation ability and the number of CD133 positive cells were significantly decreased by apatinib, suggesting that apatinib inhibited the malignant and stem-like features of NSCLC cells. Mechanistically, apatinib inhibited PD-L1 and c-Myc expression by targeting VEGFR2/STAT3 signaling. Apatinib also inhibited PD-L1 expression in THP-1 derived macrophages stimulated by CM from NSCLC cells. Furthermore, apatinib pretreatment increased CD69 expression and IFN-γ secretion in stimulated Jurkat T cells co-cultured with NSCLC cells. Apatinib also promoted ROS production and inhibited Nrf2 and p62 expression, leading to the autophagic and apoptotic cell death in NSCLC. Moreover, apatinib significantly inhibited tumor growth in vivo. CONCLUSION: Our data indicated that apatinib induced autophagy and apoptosis in NSCLC via regulating VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Pyridines/pharmacology , Signal Transduction/drug effects , Animals , B7-H1 Antigen/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Male , Mice , NF-E2-Related Factor 2/metabolism , Neoplastic Stem Cells/drug effects , Reactive Oxygen Species , STAT3 Transcription Factor/metabolism , Vascular Endothelial Growth Factor Receptor-2 , Xenograft Model Antitumor Assays
11.
Hemasphere ; 5(8): e617, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34350385

ABSTRACT

In this phase 3 trial, older patients with acute myeloid leukemia ineligible for intensive chemotherapy were randomized 2:1 to receive the polo-like kinase inhibitor, volasertib (V; 350 mg intravenous on days 1 and 15 in 4-wk cycles), combined with low-dose cytarabine (LDAC; 20 mg subcutaneous, twice daily, days 1-10; n = 444), or LDAC plus placebo (P; n = 222). Primary endpoint was objective response rate (ORR); key secondary endpoint was overall survival (OS). Primary ORR analysis at recruitment completion included patients randomized ≥5 months beforehand; ORR was 25.2% for V+LDAC and 16.8% for P+LDAC (n = 371; odds ratio 1.66 [95% confidence interval (CI), 0.95-2.89]; P = 0.071). At final analysis (≥574 OS events), median OS was 5.6 months for V+LDAC and 6.5 months for P+LDAC (n = 666; hazard ratio 0.97 [95% CI, 0.8-1.2]; P = 0.757). The most common adverse events (AEs) were infections/infestations (grouped term; V+LDAC, 81.3%; P+LDAC, 63.5%) and febrile neutropenia (V+LDAC, 60.4%; P+LDAC, 29.3%). Fatal AEs occurred in 31.2% with V+LDAC versus 18.0% with P+LDAC, most commonly infections/infestations (V+LDAC, 17.1%; P+LDAC, 6.3%). Lack of OS benefit with V+LDAC versus P+LDAC may reflect increased early mortality with V+LDAC from myelosuppression and infections.

12.
Cell Death Discov ; 7(1): 102, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33980809

ABSTRACT

The abnormal activation of Wnt/ß-catenin signaling plays a critical role in the development of lung cancer, which is also important in the generation and maintenance of lung cancer stem cell (CSC). CSCs have unique capabilities to resist anticancer therapy, seed recurrent tumors, and disseminate to and colonize distant tissues. Apatinib, a small-molecule VEGFR2-tyrosine kinase inhibitor, shows highly efficient antitumor activity in heavily treated, chemoresistant, and metastatic lung cancer. We speculated that inhibition of Wnt/ß-catenin signaling and targeting lung CSCs could be one of the anti-tumor mechanisms of apatinib. In the present study we demonstrated that apatinib repressed lung CSC-like traits by hindering sphere formation ability, lung CSC-related marker expression and decreasing chemoresistance derived stemness. Mechanistically, apatinib exerted its anti-CSC effects by inhibiting ß-catenin and its downstream targets. Moreover, apatinib induced the production of reactive oxyen species (ROS), which participated in the inhibitory effects of apatinib on lung CSCs. It was found that ß-catenin regulated apatinib-induced production of ROS. Inhibition or promotion of ROS production with N-acetyl-L-cysteine or H2O2 not only upregulated or downregulated ß-catenin expression, but also prevented or promoted DNA damage, rescued or impeded sphere formation, respectively. Collectively, our findings reveal that apatinib directly inhibits ß-catenin signaling and promotes ROS generation to suppress lung CSC-like characteristics. A clearer understanding of the anti-cancer mechanisms of apatinib is required for its better application in combating advanced and refractory/recurrent lung cancer when combined with conventional chemotherapy.

13.
J Hazard Mater ; 394: 122549, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32283380

ABSTRACT

Bisphenol S is considered as a safer alternative to bisphenol A. In the present study, we used murine macrophages to investigate the effects of BPS exposure on oxidative stress and inflammatory response as well as the underlying mechanism. Cells were exposed to BPS at various concentrations for short period of times. Results showed that 10-8 M BPS triggered oxidative stress by increasing ROS/RNS production, increased the levels of oxidant enzyme NOX1/2, and decreased the levels of antioxidant enzymes SOD1/2, CAT and GSH-Px. 10-8 M BPS exposure significantly induced the production of proinflammatory mediators. Activation of the NLRP3 inflammasome, TLR4, and MAPK pathways was involved in this process. Furthermore, we illustrated that NAC pretreatment diminished these effects triggered by BPS exposure. Collectively, our data suggested that BPS at a dose relevant to human serum concentration induced oxidative stress and inflammatory response in macrophages. These novel findings shed light on the concerns regarding the potential adverse effects of BPS exposure that requires further careful attention.


Subject(s)
Inflammasomes/drug effects , Inflammation/chemically induced , MAP Kinase Signaling System/drug effects , Oxidative Stress/drug effects , Phenols/toxicity , Sulfones/toxicity , Acetylcysteine/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Cell Survival/drug effects , Free Radical Scavengers/pharmacology , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Toll-Like Receptor 4/metabolism
14.
J Nutr Biochem ; 72: 108219, 2019 10.
Article in English | MEDLINE | ID: mdl-31473507

ABSTRACT

Epithelial-mesenchymal transition (EMT) contributes to the initiation, invasion, metastasis and drug resistance of cancer. The function of extracellular signal-regulated kinase 5 (ERK5) in lung cancer progression remains elusive. In this study, we investigated the effect of sulforaphane (SFN) on lung cancer EMT and the role of ERK5 in its effect. Wound healing and Transwell assays were applied to examine the migratory and invasive capacity in vitro. Quantitative real-time polymerase chain reaction and immunoblotting analysis were performed to investigate the expression of mRNA and protein levels. Small-interfering RNA was used to silence ERK5. Xenograft model was used to confirm the effect of SFN in vivo. Enhanced EMT and decreased ERK5 activation were observed in lung cancer cells in comparison with normal human bronchial epithelial cells. SFN diminished the migratory and invasive capacity of lung cancer cells. Additionally, significantly increased expression of epithelial markers (E-cadherin and ZO-1), decreased expression of mesenchymal markers (N-cadherin and Snail1) and activation of ERK5 were observed after SFN treatment. The inhibitory effect of SFN on lung cancer cell EMT was attenuated by ERK5 silencing. SFN-induced EMT suppression and ERK5 activation were further confirmed in lung cancer xenograft mouse model. The present study illustrated for the first time that ERK5 activation mediates SFN suppression of lung cancer cell EMT. These findings could provide new insights into the function of ERK5 in EMT regulation and the potential therapeutic application of SFN in cancer intervention.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Isothiocyanates/pharmacology , Lung Neoplasms/drug therapy , Mitogen-Activated Protein Kinase 7/metabolism , A549 Cells , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Enzyme Activation/drug effects , Female , Humans , Lung Neoplasms/pathology , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase 7/genetics , Sulfoxides , Xenograft Model Antitumor Assays
15.
Phytother Res ; 33(10): 2783-2791, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31342620

ABSTRACT

Genistein, a soy derived isoflavanoid compound, exerts anticancer effects in various cancers. Nasopharyngeal cancer stem cells (NCSCs) are a small subpopulation of cancer cells which are responsible for initiation, progression, metastasis, and recurrence of nasopharyngeal cancer. The present study aimed to investigate the suppressive effects of genistein on NCSCs and its underlying mechanism. NCSCs were enriched from human nasopharyngeal cancer cell lines CNE2 and HONE1 through tumorsphere-forming assay. It was shown that genistein inhibited the tumorsphere formation capacity, decreased the number of EpCAM+ cells, downregulated the expression of NCSCs markers, suppressed cell proliferation, and induced apoptosis of NCSCs. Genistein suppressed the activity of Sonic hedgehog (SHH) signaling, which was important for the maintenance of NCSCs, while activation of SHH signaling by purmorphamine diminished the inhibitory effects of genistein on NCSCs. Our data suggested that genistein inhibited NCSCs through the suppression of SHH signaling. These findings support the use of genistein for targeting NCSCs.


Subject(s)
Genistein/pharmacology , Hedgehog Proteins/physiology , Nasopharyngeal Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Cell Line, Tumor , Humans , Signal Transduction/drug effects
16.
Int J Food Sci Nutr ; 70(5): 570-578, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30624124

ABSTRACT

Sulforaphane (SFN) is the major component extracted from broccoli/broccoli sprouts. It has been shown to possess anti-cancer activity. Gastric cancer is common cancer worldwide. The objective of this work was to evaluate the inhibitory effect of SFN on gastric cancer by Sonic hedgehog (Hh) Pathway. The results found that tumorsphere formation and the expression levels of gastric cancer stem cells (CSCs) markers were significantly decreased after SFN treatment. SFN also exerted inhibitory effects by suppressing proliferation and inducing apoptosis in gastric CSCs. Intriguingly, SFN inhibited the activation of Sonic Hh, a key pathway in maintaining the stemness of gastric CSCs. Upregulation of Sonic Hh pathway diminished the inhibitory effects of SFN on gastric CSCs. Collectively, these data revealed that SFN could be a potent natural compound targeting gastric CSCs via suppression of Sonic Hh pathway, which might be an promising agent for gastric cancer intervention.


Subject(s)
Antineoplastic Agents/pharmacology , Hedgehog Proteins/metabolism , Isothiocyanates/pharmacology , Neoplastic Stem Cells/drug effects , Signal Transduction/drug effects , Stomach Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Brassica/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic , Humans , Hyaluronan Receptors , Mice , Mice, Transgenic , Sulfoxides , Up-Regulation
17.
Article in English | MEDLINE | ID: mdl-28337227

ABSTRACT

Chinese propolis (CP) is known as a health food but its beneficial effects in protecting cardiomyocytes remain elusive. Here, we investigated the effects of CP and its active compounds on hydrogen peroxide (H2O2) induced rats cardiomyocytes (H9c2) oxidative injury. Cell viability decreases induced by H2O2 were mitigated by different CP extracts using various solvents. From these active fractions, six active compounds were separated and identified. Among tested isolated compound, the cytoprotective activities of three caffeates, caffeic acid phenethyl ester (CAPE), benzyl caffeate (BZC), and cinnamyl caffeate (CNC), exerted stronger effects than chrysin, pinobanksin, and 3,4-dimethoxycinnamic acid (DMCA). These three caffeates also increased H9c2 cellular antioxidant potential, decreased intracellular calcium ion ([Ca2+]i) level, and prevented cell apoptosis. Overall, the cardiovascular protective effects of the CP might be attributed to its caffeates constituents (CAPE, BZC, and CNC) and provide evidence for its usage in complementary and alternative medicine.

18.
Nutr Cancer ; 68(1): 113-9, 2016.
Article in English | MEDLINE | ID: mdl-26771229

ABSTRACT

Omge-3 polyunsaturated fatty acids (PUFAs) exhibited significant effect in inhibiting various tumors. However, the mechanisms of its anticancer role have not been fully demonstrated. The declination of 5-methylcytosine (5 mC) was closely associated with poor prognosis of tumors. To explore whether omega-3 PUFAs influences on DNA methylation level in tumors, colorectal cancer (CRC) rat model were constructed using N-methyl phosphite nitrourea and omega-3 PUFAs were fed to part of the rats during tumor induction. The PUFAs contents in the rats of 3 experimental groups were measured using gas chromatography and 5 mC level were detected by liquid chromatography tandem mass spectrometry. The results showed that tumor incidence in omega-3 treated rats was much lower than in CRC model rats, which confirmed significant antitumor role of omega-3 PUFAs. Six PUFA members categorized to omega-3 and omega-6 families were quantified and the ratio of omega-6/omega-3 PUFAs was remarkably lower in omega-3 PUFAs treatment group than in CRC model group. 5 mC content in omega-3 PUFAs treated rats was higher than in CRC model rats, suggesting omega-3 PUFAs promoted 5 mC synthesis. Therefore, omega-3 PUFAs probably inhibited tumor growth via regulating DNA methylation process, which provided a novel anticancer mechanism of omega-3 PUFAs from epigenetic view.


Subject(s)
Colorectal Neoplasms/prevention & control , DNA Methylation , Fatty Acids, Omega-3/therapeutic use , Animals , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-3/pharmacology , Genomics , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
19.
Lifetime Data Anal ; 18(3): 339-63, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22484596

ABSTRACT

Competing risks data are routinely encountered in various medical applications due to the fact that patients may die from different causes. Recently, several models have been proposed for fitting such survival data. In this paper, we develop a fully specified subdistribution model for survival data in the presence of competing risks via a subdistribution model for the primary cause of death and conditional distributions for other causes of death. Various properties of this fully specified subdistribution model have been examined. An efficient Gibbs sampling algorithm via latent variables is developed to carry out posterior computations. Deviance information criterion (DIC) and logarithm of the pseudomarginal likelihood (LPML) are used for model comparison. An extensive simulation study is carried out to examine the performance of DIC and LPML in comparing the cause-specific hazards model, the mixture model, and the fully specified subdistribution model. The proposed methodology is applied to analyze a real dataset from a prostate cancer study in detail.


Subject(s)
Bayes Theorem , Likelihood Functions , Models, Statistical , Risk , Algorithms , Computer Simulation , Humans , Male , Markov Chains , Monte Carlo Method , Prostate-Specific Antigen/blood , Prostatic Neoplasms/immunology
20.
Ageing Int ; 36(2): 159-191, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21654869

ABSTRACT

A randomized controlled efficacy trial targeting older adults with hypertension (age 60 and over) provided an e-health, tailored intervention with the "next generation" of the Personal Education Program (PEP-NG). Eleven primary care practices with advanced practice registered nurse (APRN) providers participated. Participants (N = 160) were randomly assigned by the PEP-NG (accessed via a wireless touchscreen tablet computer) to either control (entailing data collection and four routine APRN visits) or tailored intervention (involving PEP-NG intervention and four focused APRN visits) group. Compared to patients in the control group, patients receiving the PEP-NG e-health intervention achieved significant increases in both self-medication knowledge and self-efficacy measures, with large effect sizes. Among patients not at BP targets upon entry to the study, therapy intensification in controls (increased antihypertensive dose and/or an additional antihypertensive) was significant (p = .001) with an odds ratio of 21.27 in the control compared to the intervention group. Among patients not at BP targets on visit 1, there was a significant declining linear trend in proportion of the intervention group taking NSAIDs 21-31 days/month (p = 0.008). Satisfaction with the PEP-NG and the APRN provider relationship was high in both groups. These results suggest that the PEP-NG e-health intervention in primary care practices is effective in increasing knowledge and self-efficacy, as well as improving behavior regarding adverse self-medication practices among older adults with hypertension.

SELECTION OF CITATIONS
SEARCH DETAIL