Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 6: 34589, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27713552

ABSTRACT

The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result in a severe and often fatal infection in humans. However, bats are natural hosts and survive filovirus infections without obvious symptoms. The molecular basis of this striking difference in the response to filovirus infections is not well understood. We report a systematic overview of differentially expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine ligands and transcription factors. We observed a strong induction of the JAK/STAT pathway, of several genes encoding inhibitors of MAP kinases (DUSP genes) and of PPP1R15A, which is involved in ER stress-induced cell death. We used comparative transcriptomics to provide a data resource that can be used to identify cellular responses that might allow bats to survive filovirus infections.


Subject(s)
Ebolavirus/metabolism , Gene Expression Regulation , Hemorrhagic Fever, Ebola/metabolism , Marburg Virus Disease/metabolism , Marburgvirus/metabolism , Signal Transduction , Transcription, Genetic , Animals , Cell Line, Tumor , Chiroptera , Humans
3.
Cell Syst ; 2(5): 312-22, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27211858

ABSTRACT

We present a genome-scale model of Caenorhabditis elegans metabolism along with the public database ElegCyc (http://elegcyc.bioinf.uni-jena.de:1100), which represents a reference for metabolic pathways in the worm and allows for the visualization as well as analysis of omics datasets. Our model reflects the metabolic peculiarities of C. elegans that make it distinct from other higher eukaryotes and mammals, including mice and humans. We experimentally verify one of these peculiarities by showing that the lifespan-extending effect of L-tryptophan supplementation is dose dependent (hormetic). Finally, we show the utility of our model for analyzing omics datasets through predicting changes in amino acid concentrations after genetic perturbations and analyzing metabolic changes during normal aging as well as during two distinct, reactive oxygen species (ROS)-related lifespan-extending treatments. Our analyses reveal a notable similarity in metabolic adaptation between distinct lifespan-extending interventions and point to key pathways affecting lifespan in nematodes.


Subject(s)
Caenorhabditis elegans , Databases, Genetic , Animals , Caenorhabditis elegans Proteins , Genome , Hormesis , Humans , Longevity , Mice , Reactive Oxygen Species
4.
Nat Commun ; 6: 10043, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26620638

ABSTRACT

Ageing has been defined as a global decline in physiological function depending on both environmental and genetic factors. Here we identify gene transcripts that are similarly regulated during physiological ageing in nematodes, zebrafish and mice. We observe the strongest extension of lifespan when impairing expression of the branched-chain amino acid transferase-1 (bcat-1) gene in C. elegans, which leads to excessive levels of branched-chain amino acids (BCAAs). We further show that BCAAs reduce a LET-363/mTOR-dependent neuro-endocrine signal, which we identify as DAF-7/TGFß, and that impacts lifespan depending on its related receptors, DAF-1 and DAF-4, as well as ultimately on DAF-16/FoxO and HSF-1 in a cell-non-autonomous manner. The transcription factor HLH-15 controls and epistatically synergizes with BCAT-1 to modulate physiological ageing. Lastly and consistent with previous findings in rodents, nutritional supplementation of BCAAs extends nematodal lifespan. Taken together, BCAAs act as periphery-derived metabokines that induce a central neuro-endocrine response, culminating in extended healthspan.


Subject(s)
Aging/metabolism , Amino Acids, Branched-Chain/metabolism , Caenorhabditis elegans/metabolism , Aging/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Female , Longevity , Male , Mice/genetics , Mice/growth & development , Mice/metabolism , Mice, Inbred C57BL , Transaminases/genetics , Transaminases/metabolism , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism
5.
FEBS J ; 279(17): 3192-202, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22776428

ABSTRACT

Substrate cycles, also known as futile cycles, are cyclic metabolic routes that dissipate energy by hydrolysing cofactors such as ATP. They were first described to occur in the muscles of bumblebees and brown adipose tissue in the 1970s. A popular example is the conversion of fructose 6-phosphate to fructose 1,6-bisphosphate and back. In the present study, we analyze a large number of substrate cycles in human metabolism that consume ATP and discuss their statistics. For this purpose, we use two recently published methods (i.e. EFMEvolver and the K-shortest EFM method) to calculate samples of 100,000 and 15,000 substrate cycles, respectively. We find an unexpectedly high number of substrate cycles in human metabolism, with up to 100 reactions per cycle, utilizing reactions from up to six different compartments. An analysis of tissue-specific models of liver and brain metabolism shows that there is selective pressure that acts against the uncontrolled dissipation of energy by avoiding the coexpression of enzymes belonging to the same substrate cycle. This selective force is particularly strong against futile cycles that have a high flux as a result of thermodynamic principles.


Subject(s)
Energy Metabolism , Genome, Human , Adenosine Triphosphate/metabolism , Cell Compartmentation , Humans , Hydrolysis , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...