Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Liver Int ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847551

ABSTRACT

BACKGROUND & AIMS: Cystic fibrosis (CF) is considered a multisystemic disorder in which CF-associated liver disease (CFLD) is the third most common cause of mortality. Currently, no effective treatment is available for CFLD because its pathophysiology is still unclear. Interestingly, CFLD exhibits identical vascular characteristics as non-cirrhotic portal hypertension, recently classified as porto-sinusoidal vascular disorders (PSVD). METHODS: Since endothelial cells (ECs) are an important component in PSVD, we performed single-cell RNA sequencing (scRNA-seq) on four explant livers from CFLD patients to identify differential endothelial characteristics which could contribute to the disease. We comprehensively characterized the endothelial compartment and compared it with publicly available scRNA-seq datasets from cirrhotic and healthy livers. Key gene signatures were validated ex vivo on patient tissues. RESULTS: We found that ECs from CF liver explants are more closely related to healthy than cirrhotic patients. In CF patients we also discovered a distinct population of liver sinusoidal ECs-coined CF LSECs-upregulating genes involved in the complement cascade and coagulation. Finally, our immunostainings further validated the predominant periportal location of CF LSECs. CONCLUSIONS: Our work showed novel aspects of human liver ECs at the single-cell level thereby supporting endothelial involvement in CFLD, and reinforcing the hypothesis that ECs could be a driver of PSVD. Therefore, considering the vascular compartment in CF and CFLD may help developing new therapeutic approaches for these diseases.

2.
Nat Cancer ; 4(3): 344-364, 2023 03.
Article in English | MEDLINE | ID: mdl-36732635

ABSTRACT

Metabolic rewiring is often considered an adaptive pressure limiting metastasis formation; however, some nutrients available at distant organs may inherently promote metastatic growth. We find that the lung and liver are lipid-rich environments. Moreover, we observe that pre-metastatic niche formation increases palmitate availability only in the lung, whereas a high-fat diet increases it in both organs. In line with this, targeting palmitate processing inhibits breast cancer-derived lung metastasis formation. Mechanistically, breast cancer cells use palmitate to synthesize acetyl-CoA in a carnitine palmitoyltransferase 1a-dependent manner. Concomitantly, lysine acetyltransferase 2a expression is promoted by palmitate, linking the available acetyl-CoA to the acetylation of the nuclear factor-kappaB subunit p65. Deletion of lysine acetyltransferase 2a or carnitine palmitoyltransferase 1a reduces metastasis formation in lean and high-fat diet mice, and lung and liver metastases from patients with breast cancer show coexpression of both proteins. In conclusion, palmitate-rich environments foster metastases growth by increasing p65 acetylation, resulting in a pro-metastatic nuclear factor-kappaB signaling.


Subject(s)
Lysine Acetyltransferases , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Acetylation , Acetyl Coenzyme A/metabolism , Palmitates , Lysine Acetyltransferases/metabolism
3.
Cardiovasc Res ; 119(2): 520-535, 2023 03 31.
Article in English | MEDLINE | ID: mdl-35998078

ABSTRACT

AIMS: Severe acute respiratory syndrome coronavirus-2 infection causes COVID-19, which in severe cases evokes life-threatening acute respiratory distress syndrome (ARDS). Transcriptome signatures and the functional relevance of non-vascular cell types (e.g. immune and epithelial cells) in COVID-19 are becoming increasingly evident. However, despite its known contribution to vascular inflammation, recruitment/invasion of immune cells, vascular leakage, and perturbed haemostasis in the lungs of severe COVID-19 patients, an in-depth interrogation of the endothelial cell (EC) compartment in lethal COVID-19 is lacking. Moreover, progressive fibrotic lung disease represents one of the complications of COVID-19 pneumonia and ARDS. Analogous features between idiopathic pulmonary fibrosis (IPF) and COVID-19 suggest partial similarities in their pathophysiology, yet, a head-to-head comparison of pulmonary cell transcriptomes between both conditions has not been implemented to date. METHODS AND RESULTS: We performed single-nucleus RNA-sequencing on frozen lungs from 7 deceased COVID-19 patients, 6 IPF explant lungs, and 12 controls. The vascular fraction, comprising 38 794 nuclei, could be subclustered into 14 distinct EC subtypes. Non-vascular cell types, comprising 137 746 nuclei, were subclustered and used for EC-interactome analyses. Pulmonary ECs of deceased COVID-19 patients showed an enrichment of genes involved in cellular stress, as well as signatures suggestive of dampened immunomodulation and impaired vessel wall integrity. In addition, increased abundance of a population of systemic capillary and venous ECs was identified in COVID-19 and IPF. COVID-19 systemic ECs closely resembled their IPF counterparts, and a set of 30 genes was found congruently enriched in systemic ECs across studies. Receptor-ligand interaction analysis of ECs with non-vascular cell types in the pulmonary micro-environment revealed numerous previously unknown interactions specifically enriched/depleted in COVID-19 and/or IPF. CONCLUSIONS: This study uncovered novel insights into the abundance, expression patterns, and interactomes of EC subtypes in COVID-19 and IPF, relevant for future investigations into the progression and treatment of both lethal conditions.


Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Respiratory Distress Syndrome , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Respiratory Distress Syndrome/metabolism , Transcriptome
4.
Nat Commun ; 13(1): 5511, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36127427

ABSTRACT

Since a detailed inventory of endothelial cell (EC) heterogeneity in breast cancer (BC) is lacking, here we perform single cell RNA-sequencing of 26,515 cells (including 8433 ECs) from 9 BC patients and compare them to published EC taxonomies from lung tumors. Angiogenic ECs are phenotypically similar, while other EC subtypes are different. Predictive interactome analysis reveals known but also previously unreported receptor-ligand interactions between ECs and immune cells, suggesting an involvement of breast EC subtypes in immune responses. We also identify a capillary EC subtype (LIPEC (Lipid Processing EC)), which expresses genes involved in lipid processing that are regulated by PPAR-γ and is more abundant in peri-tumoral breast tissue. Retrospective analysis of 4648 BC patients reveals that treatment with metformin (an indirect PPAR-γ signaling activator) provides long-lasting clinical benefit and is positively associated with LIPEC abundance. Our findings warrant further exploration of this LIPEC/PPAR-γ link for BC treatment.


Subject(s)
Breast Neoplasms , Metformin , Breast Neoplasms/pathology , Endothelial Cells/pathology , Female , Humans , Immunity , Ligands , Lipids , Metformin/pharmacology , PPAR gamma/genetics , RNA , Retrospective Studies
5.
STAR Protoc ; 2(3): 100508, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34585146

ABSTRACT

Endothelial cells (ECs) harbor distinct phenotypical and functional characteristics depending on their tissue localization and contribute to brain, eye, lung, and muscle diseases such as dementia, macular degeneration, pulmonary hypertension, and sarcopenia. To study their function, isolation of pure ECs in high quantities is crucial. Here, we describe protocols for rapid and reproducible blood vessel EC purification established for scRNA sequencing from murine tissues using mechanical and enzymatic digestion followed by magnetic and fluorescence-activated cell sorting. For complete details on the use and execution of these protocol, please refer to Kalucka et al. (2020), Rohlenova et al. (2020), and Goveia et al. (2020).


Subject(s)
Brain/cytology , Choroid/cytology , Endothelial Cells/cytology , Lung/cytology , Muscles/cytology , Animals , Flow Cytometry/methods , Male , Mice , Mice, Inbred C57BL
6.
STAR Protoc ; 2(3): 100523, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34382011

ABSTRACT

Endothelial cells (ECs) exhibit phenotypic and functional tissue specificities, critical for studies in the vascular field and beyond. Thus, tissue-specific methods for isolation of highly purified ECs are necessary. Kidney, spleen, and testis ECs are relevant players in health and diseases such as chronic kidney disease, acute kidney injury, myelofibrosis, and cancer. Here, we provide tailored protocols for rapid and reproducible EC purification established for scRNA sequencing from these adult murine tissues using the combination of magnetic- and fluorescence-activated cell sorting. For complete details on the use and execution of these protocols, please refer to Kalucka et al. (2020) and Dumas et al. (2020).


Subject(s)
Endothelial Cells/cytology , Kidney/cytology , Spleen/cytology , Testis/cytology , Animals , Flow Cytometry , Male , Mice
8.
Cell Rep ; 35(11): 109253, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34133923

ABSTRACT

Tumor vessel co-option is poorly understood, yet it is a resistance mechanism against anti-angiogenic therapy (AAT). The heterogeneity of co-opted endothelial cells (ECs) and pericytes, co-opting cancer and myeloid cells in tumors growing via vessel co-option, has not been investigated at the single-cell level. Here, we use a murine AAT-resistant lung tumor model, in which VEGF-targeting induces vessel co-option for continued growth. Single-cell RNA sequencing (scRNA-seq) of 31,964 cells reveals, unexpectedly, a largely similar transcriptome of co-opted tumor ECs (TECs) and pericytes as their healthy counterparts. Notably, we identify cell types that might contribute to vessel co-option, i.e., an invasive cancer-cell subtype, possibly assisted by a matrix-remodeling macrophage population, and another M1-like macrophage subtype, possibly involved in keeping or rendering vascular cells quiescent.


Subject(s)
Neoplasms/blood supply , Neoplasms/pathology , Single-Cell Analysis , Animals , Cell Line, Tumor , Endothelial Cells/pathology , Female , Kidney Neoplasms/pathology , Lung Neoplasms/secondary , Macrophages/pathology , Mice, Inbred BALB C , Myeloid Cells/pathology , Pericytes/pathology
9.
STAR Protoc ; 2(2): 100489, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34007969

ABSTRACT

Endothelial cells (ECs) from the small intestine, colon, liver, and heart have distinct phenotypes and functional adaptations that are dependent on their physiological environment. Gut ECs adapt to low oxygen, heart ECs to contractile forces, and liver ECs to low flow rates. Isolating high-purity ECs in sufficient quantities is crucial to study their functions. Here, we describe protocols combining magnetic and fluorescent activated cell sorting for rapid and reproducible EC purification from four adult murine tissues. For complete details on the use and execution of these protocols, please refer to Kalucka et al. (2020).


Subject(s)
Endothelial Cells/cytology , Flow Cytometry/methods , Intestines/cytology , Liver/cytology , Myocardium/cytology , Animals , Cells, Cultured , Male , Mice , Mice, Inbred C57BL
10.
EBioMedicine ; 66: 103288, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33752127

ABSTRACT

BACKGROUND: The antifungal drug itraconazole exerts in vitro activity against SARS-CoV-2 in Vero and human Caco-2 cells. Preclinical and clinical studies are required to investigate if itraconazole is effective for the treatment and/or prevention of COVID-19. METHODS: Due to the initial absence of preclinical models, the effect of itraconazole was explored in a clinical, proof-of-concept, open-label, single-center study, in which hospitalized COVID-19 patients were randomly assigned to standard of care with or without itraconazole. Primary outcome was the cumulative score of the clinical status until day 15 based on the 7-point ordinal scale of the World Health Organization. In parallel, itraconazole was evaluated in a newly established hamster model of acute SARS-CoV-2 infection and transmission, as soon as the model was validated. FINDINGS: In the hamster acute infection model, itraconazole did not reduce viral load in lungs, stools or ileum, despite adequate plasma and lung drug concentrations. In the transmission model, itraconazole failed to prevent viral transmission. The clinical trial was prematurely discontinued after evaluation of the preclinical studies and because an interim analysis showed no signal for a more favorable outcome with itraconazole: mean cumulative score of the clinical status 49 vs 47, ratio of geometric means 1.01 (95% CI 0.85 to 1.19) for itraconazole vs standard of care. INTERPRETATION: Despite in vitro activity, itraconazole was not effective in a preclinical COVID-19 hamster model. This prompted the premature termination of the proof-of-concept clinical study. FUNDING: KU Leuven, Research Foundation - Flanders (FWO), Horizon 2020, Bill and Melinda Gates Foundation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Itraconazole/pharmacology , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , COVID-19/etiology , COVID-19/transmission , Chlorocebus aethiops , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Humans , Itraconazole/administration & dosage , Itraconazole/pharmacokinetics , Itraconazole/therapeutic use , Male , Mesocricetus , Middle Aged , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Proof of Concept Study , SARS-CoV-2/drug effects , Treatment Outcome , Vero Cells
11.
Mol Cell ; 81(2): 386-397.e7, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33340488

ABSTRACT

In tumors, nutrient availability and metabolism are known to be important modulators of growth signaling. However, it remains elusive whether cancer cells that are growing out in the metastatic niche rely on the same nutrients and metabolic pathways to activate growth signaling as cancer cells within the primary tumor. We discovered that breast-cancer-derived lung metastases, but not the corresponding primary breast tumors, use the serine biosynthesis pathway to support mTORC1 growth signaling. Mechanistically, pyruvate uptake through Mct2 supported mTORC1 signaling by fueling serine biosynthesis-derived α-ketoglutarate production in breast-cancer-derived lung metastases. Consequently, expression of the serine biosynthesis enzyme PHGDH was required for sensitivity to the mTORC1 inhibitor rapamycin in breast-cancer-derived lung tumors, but not in primary breast tumors. In summary, we provide in vivo evidence that the metabolic and nutrient requirements to activate growth signaling differ between the lung metastatic niche and the primary breast cancer site.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Mammary Neoplasms, Experimental/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Phosphoglycerate Dehydrogenase/genetics , Serine/biosynthesis , Animals , Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Female , Humans , Ketoglutaric Acids/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Phosphoglycerate Dehydrogenase/metabolism , Pyruvic Acid/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Sirolimus/pharmacology
12.
Eur Respir J ; 57(4)2021 04.
Article in English | MEDLINE | ID: mdl-33184117

ABSTRACT

Cystic fibrosis (CF) is a life-threatening disorder characterised by decreased pulmonary mucociliary and pathogen clearance, and an exaggerated inflammatory response leading to progressive lung damage. CF is caused by bi-allelic pathogenic variants of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel. CFTR is expressed in endothelial cells (ECs) and EC dysfunction has been reported in CF patients, but a role for this ion channel in ECs regarding CF disease progression is poorly described.We used an unbiased RNA sequencing approach in complementary models of CFTR silencing and blockade (by the CFTR inhibitor CFTRinh-172) in human ECs to characterise the changes upon CFTR impairment. Key findings were further validated in vitro and in vivo in CFTR-knockout mice and ex vivo in CF patient-derived ECs.Both models of CFTR impairment revealed that EC proliferation, migration and autophagy were downregulated. Remarkably though, defective CFTR function led to EC activation and a persisting pro-inflammatory state of the endothelium with increased leukocyte adhesion. Further validation in CFTR-knockout mice revealed enhanced leukocyte extravasation in lung and liver parenchyma associated with increased levels of EC activation markers. In addition, CF patient-derived ECs displayed increased EC activation markers and leukocyte adhesion, which was partially rescued by the CFTR modulators VX-770 and VX-809.Our integrated analysis thus suggests that ECs are no innocent bystanders in CF pathology, but rather may contribute to the exaggerated inflammatory phenotype, raising the question of whether normalisation of vascular inflammation might be a novel therapeutic strategy to ameliorate the disease severity of CF.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Endothelial Cells/metabolism , Humans , Phenotype , Transcriptome
13.
Nat Rev Immunol ; 20(7): 448, 2020 07.
Article in English | MEDLINE | ID: mdl-32499635

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Cell Metab ; 31(4): 862-877.e14, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268117

ABSTRACT

Endothelial cell (EC) metabolism is an emerging target for anti-angiogenic therapy in tumor angiogenesis and choroidal neovascularization (CNV), but little is known about individual EC metabolic transcriptomes. By single-cell RNA sequencing 28,337 murine choroidal ECs (CECs) and sprouting CNV-ECs, we constructed a taxonomy to characterize their heterogeneity. Comparison with murine lung tumor ECs (TECs) revealed congruent marker gene expression by distinct EC phenotypes across tissues and diseases, suggesting similar angiogenic mechanisms. Trajectory inference predicted that differentiation of venous to angiogenic ECs was accompanied by metabolic transcriptome plasticity. ECs displayed metabolic transcriptome heterogeneity during cell-cycle progression and in quiescence. Hypothesizing that conserved genes are important, we used an integrated analysis, based on congruent transcriptome analysis, CEC-tailored genome-scale metabolic modeling, and gene expression meta-analysis in cross-species datasets, followed by in vitro and in vivo validation, to identify SQLE and ALDH18A1 as previously unknown metabolic angiogenic targets.


Subject(s)
Endothelial Cells/metabolism , Lung Neoplasms/metabolism , Macular Degeneration/metabolism , Neovascularization, Pathologic/metabolism , Transcriptome , Animals , Endothelial Cells/cytology , Endothelial Cells/pathology , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis
17.
Cell ; 180(4): 764-779.e20, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32059779

ABSTRACT

The heterogeneity of endothelial cells (ECs) across tissues remains incompletely inventoried. We constructed an atlas of >32,000 single-EC transcriptomes from 11 mouse tissues and identified 78 EC subclusters, including Aqp7+ intestinal capillaries and angiogenic ECs in healthy tissues. ECs from brain/testis, liver/spleen, small intestine/colon, and skeletal muscle/heart pairwise expressed partially overlapping marker genes. Arterial, venous, and lymphatic ECs shared more markers in more tissues than did heterogeneous capillary ECs. ECs from different vascular beds (arteries, capillaries, veins, lymphatics) exhibited transcriptome similarity across tissues, but the tissue (rather than the vessel) type contributed to the EC heterogeneity. Metabolic transcriptome analysis revealed a similar tissue-grouping phenomenon of ECs and heterogeneous metabolic gene signatures in ECs between tissues and between vascular beds within a single tissue in a tissue-type-dependent pattern. The EC atlas taxonomy enabled identification of EC subclusters in public scRNA-seq datasets and provides a powerful discovery tool and resource value.


Subject(s)
Endothelial Cells/metabolism , Single-Cell Analysis , Transcriptome , Animals , Brain/cytology , Cardiovascular System/cytology , Endothelial Cells/classification , Endothelial Cells/cytology , Gastrointestinal Tract/cytology , Male , Mice , Mice, Inbred C57BL , Muscles/cytology , Organ Specificity , RNA-Seq , Testis/cytology
18.
Cancer Cell ; 37(1): 21-36.e13, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31935371

ABSTRACT

Heterogeneity of lung tumor endothelial cell (TEC) phenotypes across patients, species (human/mouse), and models (in vivo/in vitro) remains poorly inventoried at the single-cell level. We single-cell RNA (scRNA)-sequenced 56,771 endothelial cells from human/mouse (peri)-tumoral lung and cultured human lung TECs, and detected 17 known and 16 previously unrecognized phenotypes, including TECs putatively regulating immune surveillance. We resolved the canonical tip TECs into a known migratory tip and a putative basement-membrane remodeling breach phenotype. Tip TEC signatures correlated with patient survival, and tip/breach TECs were most sensitive to vascular endothelial growth factor blockade. Only tip TECs were congruent across species/models and shared conserved markers. Integrated analysis of the scRNA-sequenced data with orthogonal multi-omics and meta-analysis data across different human tumors, validated by functional analysis, identified collagen modification as a candidate angiogenic pathway.


Subject(s)
Endothelial Cells/cytology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Neovascularization, Pathologic , Angiogenesis Inhibitors/pharmacology , Animals , Basement Membrane/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Movement , Cluster Analysis , Collagen/chemistry , Endothelium, Vascular/metabolism , Female , Humans , Lung Neoplasms/drug therapy , Male , Mice , Phenotype , Single-Cell Analysis , Vascular Endothelial Growth Factor A/metabolism
19.
Dev Biol ; 447(1): 90-102, 2019 03 01.
Article in English | MEDLINE | ID: mdl-29224892

ABSTRACT

Recently, endothelial cell metabolism has emerged as an essential driver and regulator of both blood and lymph vessel development. Evidence rapidly builds that metabolism is not only necessary for endothelial cell function, but moreover controls several aspects of the (lymph)-angiogenic process. So far, the best-characterized metabolic pathways to have an impact on angiogenesis are glycolysis, fatty acid oxidation and glutamine metabolism. Glycolysis regulates tip cell behavior by providing ATP, fatty acid oxidation controls stalk cell proliferation by producing nucleotide biomass, and glutamine metabolism is critical for tip and stalk cell dynamics by supporting Krebs cycle anaplerosis, protein production and redox homeostasis, and links to asparagine metabolism. During lymphangiogenesis, glycolysis and fatty acid oxidation are key metabolic pathways. Glycolysis provides energy for growing lymph vessels, while fatty acid oxidation is a critical metabolic regulator of lymphangiogenesis, in part by promoting nucleotide synthesis as well as by mediating epigenetic changes of histone acetylation, which promotes transcription of key lymphatic genes, and hence venous-to-lymphatic endothelial cell differentiation. On the whole, increasing knowledge on the metabolic landscape of endothelial cells offers a fresh impetus to future treatment possibilities of vascular related diseases.


Subject(s)
Fatty Acids/metabolism , Glucose/metabolism , Glutamine/metabolism , Lymphangiogenesis/physiology , Neovascularization, Physiologic/physiology , Animals , Blood Vessels/embryology , Epigenesis, Genetic/physiology , Gene Expression Regulation, Developmental/physiology , Glycolysis/physiology , Humans , Lymphatic Vessels/embryology
20.
Nucleic Acids Res ; 47(D1): D736-D744, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30357379

ABSTRACT

Endothelial cells (ECs) line blood vessels, regulate homeostatic processes (blood flow, immune cell trafficking), but are also involved in many prevalent diseases. The increasing use of high-throughput technologies such as gene expression microarrays and (single cell) RNA sequencing generated a wealth of data on the molecular basis of EC (dys-)function. Extracting biological insight from these datasets is challenging for scientists who are not proficient in bioinformatics. To facilitate the re-use of publicly available EC transcriptomics data, we developed the endothelial database EndoDB, a web-accessible collection of expert curated, quality assured and pre-analyzed data collected from 360 datasets comprising a total of 4741 bulk and 5847 single cell endothelial transcriptomes from six different organisms. Unlike other added-value databases, EndoDB allows to easily retrieve and explore data of specific studies, determine under which conditions genes and pathways of interest are deregulated and assess reprogramming of metabolism via principal component analysis, differential gene expression analysis, gene set enrichment analysis, heatmaps and metabolic and transcription factor analysis, while single cell data are visualized as gene expression color-coded t-SNE plots. Plots and tables in EndoDB are customizable, downloadable and interactive. EndoDB is freely available at https://vibcancer.be/software-tools/endodb, and will be updated to include new studies.


Subject(s)
Computational Biology , Databases, Genetic , Transcriptome/genetics , Animals , Endothelial Cells/metabolism , Gene Expression Regulation/genetics , Humans , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...