Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
BMC Oral Health ; 23(1): 267, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37161444

ABSTRACT

BACKGROUND: The appearance of intraoral scanners (IOSs) in dental offices was an important milestones for the digital innovations in dentistry. Knowing the learning curve for intraoral scanning is crucial, because it can serve as a guideline for clinicians before buying a new IOS. The aim of the present in vivo study was to determine the learning curve required by dental students for intraoral scanning with the 3Shape Trios 4 IOS and the CEREC Primescan IOS, based on scanning time. METHODS: A total of 20 dental students with no previous experience in intraoral scanning participated in the present study. 10 students scanned with Trios 4® IOS (TRI) and 10 students took digital impressions with Primescan® IOS (CER). Every student created 15 digital impressions from patients. Prior to taking the impressions, theoretical and practical education was provided. The total scanning time included the upper and lower arches as well as bite registration, for which average values were calculated. Statistical analysis was performed using the Stata package with a mixed-effects generalized least squares regression models. RESULTS: The average total scanning times were the following: TRI - 205 s for the 1st impression, 133.6 s for the 15th, CER - 289.8 s for the 1st impression, 147 s for the 15th. The model-based estimate of the difference between the two in case of TRI was 57.5 s, and in CER was 144.2 s which is a highly significant improvement in both cases (P < 0.0001). The slope of the scanning time vs. learning phase curve gradually approached flatness, and maintained a plateau: TRI - from the 11th measurement and CER - from the 14th measurement onward. CONCLUSIONS: Given the limitations of the present study, we found difference between the learning curve of scanner types which are operate various principle of imaging. In case of the TRI fewer digital impressions (11 repeating) were sufficient to reach the average scanning time of an experienced user than using CER (14 repeating). TRIAL REGISTRATION: The permission for this study was given by the University Ethics Committee of Semmelweis University (SE RKEB number: 184/2022).


Subject(s)
Learning Curve , Research Design , Humans , Radionuclide Imaging , Educational Status , Students
2.
Neuron ; 111(13): 2065-2075.e5, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37164008

ABSTRACT

Although the etiology of major depressive disorder remains poorly understood, reduced gamma oscillations is an emerging biomarker. Olfactory bulbectomy, an established model of depression that reduces limbic gamma oscillations, suffers from non-specific effects of structural damage. Here, we show that transient functional suppression of olfactory bulb neurons or their piriform cortex efferents decreased gamma oscillation power in limbic areas and induced depression-like behaviors in rodents. Enhancing transmission of gamma oscillations from olfactory bulb to limbic structures by closed-loop electrical neuromodulation alleviated these behaviors. By contrast, silencing gamma transmission by anti-phase closed-loop stimulation strengthened depression-like behaviors in naive animals. These induced behaviors were neutralized by ketamine treatment that restored limbic gamma power. Taken together, our results reveal a causal link between limbic gamma oscillations and depression-like behaviors in rodents. Interfering with these endogenous rhythms can affect behaviors in rodent models of depression, suggesting that restoring gamma oscillations may alleviate depressive symptoms.


Subject(s)
Depressive Disorder, Major , Olfactory Bulb , Animals , Olfactory Bulb/physiology , Rodentia , Depression/therapy , Neurons
3.
Neurobiol Dis ; 178: 106025, 2023 03.
Article in English | MEDLINE | ID: mdl-36731682

ABSTRACT

Spike-and-wave discharges (SWDs), generated by the cortico-thalamo-cortical (CTC) network, are pathological, large amplitude oscillations and the hallmark of absence seizures (ASs). SWDs begin in a cortical initiation network in both humans and animal models, including the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), where it is located in the primary somatosensory cortex (S1). The behavioral manifestation of an AS occurs when SWDs spread from the cortical initiation site to the whole brain, however, the mechanisms behind this rapid propagation remain unclear. Here we investigated these processes beyond the principal CTC network, in higher-order (HO) thalamic nuclei (lateral posterior (LP) and posterior (PO) nuclei) since their diffuse connectivity and known facilitation of intracortical communications make these nuclei key candidates to support SWD generation and maintenance. In freely moving GAERS, multi-site LFP in LP, PO and multiple cortical regions revealed a novel feature of SWDs: during SWDs there are short periods (named SWD-breaks) when cortical regions far from S1, such the primary visual cortex (V1), become transiently unsynchronized from the ongoing EEG rhythm. Inactivation of HO nuclei with local muscimol injections or optogenetic perturbation of HO nuclei activity increased the occurrence of SWD-breaks and the former intervention also increased the SWD propagation-time from S1. The neural underpinnings of these findings were explored further by silicon probe recordings from single units of PO which uncovered two previously unknown groups of excitatory neurons based on their burst firing dynamics at SWD onset. Moreover, a switch from tonic to burst firing at SWD onset was shown to be an important feature since it was much less prominent for non-generalized events, i.e. SWDs that remained local to S1. Additionally, one group of neurons showed a reverse of this switch during SWD-breaks, demonstrating the importance of this firing pattern throughout the SWD. In summary, these results support the view that multiple HO thalamic nuclei are utilized at SWD onset and contribute to cortical synchrony throughout the paroxysmal discharge.


Subject(s)
Epilepsy, Absence , Humans , Rats , Animals , Epilepsy, Absence/genetics , Electroencephalography , Thalamic Nuclei/physiology , Seizures , Neurons/physiology , Thalamus , Disease Models, Animal
4.
Front Neuroanat ; 17: 1105998, 2023.
Article in English | MEDLINE | ID: mdl-36760662

ABSTRACT

The development of functionally interconnected networks between primary (S1), secondary somatosensory (S2), and motor (M1) cortical areas requires coherent neuronal activity via corticocortical projections. However, the anatomical substrate of functional connections between S1 and M1 or S2 during early development remains elusive. In the present study, we used ex vivo carbocyanine dye (DiI) tracing in paraformaldehyde-fixed newborn mouse brain to investigate axonal projections of neurons in different layers of S1 barrel field (S1Bf), M1, and S2 toward the subplate (SP), a hub layer for sensory information transfer in the immature cortex. In addition, we performed extracellular recordings in neocortical slices to unravel the functional connectivity between these areas. Our experiments demonstrate that already at P0 neurons from the cortical plate (CP), layer 5/6 (L5/6), and the SP of both M1 and S2 send projections through the SP of S1Bf. Reciprocally, neurons from CP to SP of S1Bf send projections through the SP of M1 and S2. Electrophysiological recordings with multi-electrode arrays in cortical slices revealed weak, but functional synaptic connections between SP and L5/6 within and between S1 and M1. An even lower functional connectivity was observed between S1 and S2. In summary, our findings demonstrate that functional connections between SP and upper cortical layers are not confined to the same cortical area, but corticocortical connection between adjacent cortical areas exist already at the day of birth. Hereby, SP can integrate early cortical activity of M1, S1, and S2 and shape the development of sensorimotor integration at an early stage.

5.
BMC Oral Health ; 22(1): 140, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35473932

ABSTRACT

BACKGROUND: The evolution of intraoral scanners (IOSs) is rapid, and new IOSs appear on the market with different properties depending on the manufacturers. There is no uniform rating system based on a defined set of aspects that has reported in the literature that can be used to compare these devices. This validation study aimed to compare different IOSs based on objective and comprehensive parameters. METHODS: In this study, 12 different IOSs were examined. The IOSs that were tested in this study in order of their delivery included the 3Shape Trios 3 Pod®, Planmeca Emerald®, Straumann DWIO®, GC Aadva®, iTero Element 2®, CEREC Primescan®, Medit i500®, 3Shape Trios 4 Move®, Carestream CS3600®, 3Shape Trios 4 Pod®, Carestream CS3700®, and Planmeca Emerald S®. IOSs were evaluated in four different ways: (a)summary chart, (b)comparative assessment, (c)data based on in vitro measurements and (d)accuracy measurements. A scoring system was created to enable an objective rating of IOSs. RESULTS: The differences among IOSs were demonstrated in point scores (summary chart[max. 10 points] + weight of IOSs[max. 2.5 points] + circumference of IOSs[max. 2.5 points] + in vitro scanning time[max. 2.5 points] + pauses in data capture[max. 2.5 points] + accuracy[max. 10 points] = summary[max. 30 points]). Trios 4 Pod achieved the greatest cumulative score (23.37 points), furthermore it earned the highest points for summary chart and scanning speed. Regarding scanning continuity, the best-performing IOSs, which tied at identical point scores, were the Trios 3 and 4 Pod, Trios 4 Move, iTero Element 2, CS3600 and CS3700. The most accurate IOS was the CEREC Primescan, although it earned the lowest points of the comparative assessment (heaviest IOS). GC Aadva scored 5.73 points of a maximum of 30 points, which was the poorest result in this study. CONCLUSION: The scoring system reflects the differences among IOS devices based on the evaluated objective parameters and can be used to help clinicians select the right IOS device. The new generations of IOSs have more special properties, and their accuracy is higher than the previous versions. Trial registration The permission for this study was granted by University Ethics Committee of Semmelweis University (SE RKEB number:108/2019).


Subject(s)
Dental Impression Technique , Models, Dental , Computer-Aided Design , Dental Arch , Humans , Imaging, Three-Dimensional
6.
Neurochem Int ; 142: 104920, 2021 01.
Article in English | MEDLINE | ID: mdl-33238153

ABSTRACT

The immunohistochemical pattern of kynurenine aminotransferase-2 (KAT-2) - the key role enzyme in the production of neuroactive and neuroprotective kynurenic acid (KYNA) - was studied in the cerebellum of mice. It is known from literature that KAT-2 is localized mainly in astrocytes in different parts of the cerebrum. Kynurenine aminotransferase (KAT) activity in the cerebellum is relatively low and alternative production routes for KYNA have been described there. Therefore we examined the immunohistochemical pattern of KAT-2 in this part of the brain. Surprisingly, the cellular localization of KAT-2 in mice was proven to be unique; it localized characteristically in Purkinje cells and in some other types of neurons (not identified) but was not found in astrocytes nor microglia. The exclusive neuronal, but not glial localization of KAT-2 in the cerebellum is novel and may be related to its low activity and to the alternative pathways for KYNA production that have been described.


Subject(s)
Cerebellum/cytology , Cerebellum/enzymology , Neurons/enzymology , Transaminases/metabolism , Animals , Cerebellum/chemistry , Male , Mice , Mice, Inbred C57BL , Neurons/chemistry , Purkinje Cells/chemistry , Purkinje Cells/enzymology , Species Specificity , Transaminases/analysis
7.
BMC Oral Health ; 20(1): 287, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33076894

ABSTRACT

BACKGROUND: The spread of digital technology in dentistry poses new challenges and sets new goals for dentists. The aim of the present in vivo study was to determine the learning curve of intraoral scanning described by (1) scanning time and (2) image number (count of images created by intraoral scanner during the scanning process). METHODS: Ten dental students of Semmelweis University took part in the study. Dental students took digital study impressions using a 3Shape Trios 3® (3Shape, Copenhagen, Denmark) intraoral scanning device. Each student took 10 digital impressions on volunteers. Volunteer inclusion criteria included full dentition (except for missing third molars) and no prosthetic/restorative treatment. Digital impression taking was preceded by tuition consisting of both theoretical education and practical training. Digital impressions were taken of the upper and lower arches, and the bite was recorded according to the manufacturer's instructions. Total scanning times and image numbers were recorded. RESULTS: The difference in scanning time between the first and the tenth digital impressions was significant (p = 0.007). The average scanning time for the first impressions was 23 min 9 s; for the tenth impressions, it was 15 min 28 s. The difference between the scanning times of the first and the tenth procedures was 7 min 41 s. The average image count for the first impressions was 1964.5; for the tenth impressions, it was 1468.6. The image count difference between the first and the tenth procedures was 495.9. The image count versus sequential number of measurement curve shows an initial decreasing tendency followed by a trough around the sixth measurement and a final increasing phase. CONCLUSION: Our results indicate an association between the sequential number of measurements and the outcome variables. The drop in scanning time is probably explained by a practice effect of repeated use, i.e. the students learned to move the scanning tip faster. The image count first showed a decreasing tendency, and after the sixth measurement, it increased; there was no consistent decline in mean scan count. Shorter scanning times are associated with poorer coverage quality, with the operator needing to make corrections by adding extra images; this manifests as the time function of image counts taking an increase after the sixth measurement.


Subject(s)
Dental Impression Technique , Learning Curve , Computer-Aided Design , Humans , Imaging, Three-Dimensional , Models, Dental , Research Design
8.
Brain Res Bull ; 146: 185-191, 2019 03.
Article in English | MEDLINE | ID: mdl-30639278

ABSTRACT

Manipulation of kynurenic acid (KYNA) level through kynurenine aminotransferase-2 (KAT-2) inhibition with the aim of therapy in neuro-psychiatric diseses has been the subject of extensive recent research. Although mouse models are of particular importance, neither the basic mechanism of KYNA production and release nor the relevance of KAT-2 in the mouse brain has yet been clarified. Using acute mouse brain slice preparations, we investigated the basal and L-kynurenine (L-KYN) induced KYNA production and distribution between the extracellular and intracellular compartments. Furthermore, we evaluated the effect of specific KAT-2 inhibition with the irreversible inhibitor PF-04859989. To ascertain that the observed KYNA release is not a simple consequence of general cell degradation, we examined the structural and functional integrity of the brain tissue with biochemical, histological and electrophysiological tools. We did not find relevant change in the viability of the brain tissue after several hours incubation time. HPLC measurements proved that mouse brain slices intensively produce and liberate KYNA to the extracellular compartment, while only a small proportion retained in the tissue both in the basal and L-KYN supplemented state. Finally, specific KAT-2 inhibition significantly reduced the extracellular KYNA content. Taken together, these results provide important data about KYNA production and release, and in vitro evidence for the first time of the function of KAT-2 in the adult mouse brain. Our study extends investigations of KAT-2 manipulation to mice in a bid to fully understand the function; the final, future aim is to assign therapeutical kynurenergic manipulation strategies to humans.


Subject(s)
Brain/metabolism , Kynurenic Acid/metabolism , Transaminases/metabolism , Animals , Brain/drug effects , Immunohistochemistry/methods , Kynurenic Acid/pharmacology , Kynurenine/metabolism , Kynurenine/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Transaminases/antagonists & inhibitors
9.
Microvasc Res ; 114: 19-25, 2017 11.
Article in English | MEDLINE | ID: mdl-28546077

ABSTRACT

The kynurenine pathway is a cascade of enzymatic steps generating biologically active compounds. l-kynurenine (l-KYN) is a central metabolite of tryptophan degradation. In the mammalian brain, l-KYN is partly converted to kynurenic acid (KYNA), which exerts multiple effects on neurotransmission. Recently, l-KYN or one of its derivatives were attributed a direct role in the regulation of the systemic circulation. l-KYN dilates arterial blood vessels during sepsis in rats, while it increases cerebral blood flow (CBF) in awake rabbits. Therefore, we hypothesized that acute elevation of systemic l-KYN concentration may exert potential effects on mean arterial blood pressure (MABP) and on resting CBF in the mouse brain. C57Bl/6 male mice were anesthetized with isoflurane, and MABP was monitored in the femoral artery, while CBF was assessed through the intact parietal bone with the aid of laser speckle contrast imaging. l-KYN sulfate (l-KYNs) (300mg/kg, i.p.) or vehicle was administered intraperitoneally. Subsequently, MABP and CBF were continuously monitored for 2.5h. In the control group, MABP and CBF were stable (69±4mmHg and 100±5%, respectively) throughout the entire data acquisition period. In the l-KYNs-treated group, MABP was similar to that, of control group (73±6mmHg), while hypoperfusion transients of 22±6%, lasting 7±3min occurred in the cerebral cortex over the first 60-120min following drug administration. In conclusion, the systemic high-dose of l-KYNs treatment destabilizes resting CBF by inducing a number of transient hypoperfusion events. This observation indicates the careful consideration of the dose of l-KYN administration by interpreting the effect of kynurenergic manipulation on brain function. By planning clinical trials basing on kynurenergic manipulation possible vascular side effects should also be considered.


Subject(s)
Cerebral Cortex/blood supply , Cerebrovascular Circulation/drug effects , Cerebrovascular Disorders/chemically induced , Kynurenine/toxicity , Sulfates/toxicity , Animals , Arterial Pressure , Blood Flow Velocity , Cerebrovascular Disorders/physiopathology , Injections, Intraperitoneal , Kynurenine/administration & dosage , Kynurenine/analogs & derivatives , Laser-Doppler Flowmetry , Male , Mice, Inbred C57BL , Sulfates/administration & dosage , Time Factors
10.
Brain Struct Funct ; 222(4): 1663-1672, 2017 May.
Article in English | MEDLINE | ID: mdl-27568378

ABSTRACT

During catabolism of tryptophan through the kynurenine (KYN) pathway, several endogenous metabolites with neuromodulatory properties are produced, of which kynurenic acid (KYNA) is one of the highest significance. The causal role of altered KYNA production has been described in several neurodegenerative and neuropsychiatric disorders (e.g., Parkinson's disease, Huntington's disease, schizophrenia) and therefore kynurenergic manipulation with the aim of therapy has recently been proposed. Conventionally, KYNA is produced from its precursor L-KYN with the aid of the astrocytic kynurenine aminotransferase-2 (KAT-2) in the murine brain. Although the mouse is a standard therapeutic research organism, the presence of KAT-2 in mice has not been described in detail. This study demonstrates the presence of kat-2 mRNA and protein throughout the adult C57Bl6 mouse brain. In addition to the former expression data from the rat, we found prominent KAT-2 expression not only in the astrocyte, but also in neurons in several brain regions (e.g., hippocampus, substantia nigra, striatum, and prefrontal cortex). A significant number of the KAT-2 positive neurons were positive for GAD67; the presence of the KAT-2 enzyme we could also demonstrate in mice brain homogenate and in cells overexpressing recombinant mouse KAT-2 protein. This new finding attributes a new role to interneuron-derived KYNA in neuronal network operation. Furthermore, our results suggest that the thorough investigation of the spatio-temporal expression pattern of the relevant enzymes of the KYN pathway is a prerequisite for developing and understanding the pharmacological and transgenic murine models of kynurenergic manipulation.


Subject(s)
Astrocytes/enzymology , Brain/enzymology , Transaminases/analysis , Animals , Male , Mice, Inbred C57BL , RNA, Messenger/analysis
11.
Front Behav Neurosci ; 9: 157, 2015.
Article in English | MEDLINE | ID: mdl-26136670

ABSTRACT

L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated level of KYNA may have multiple effects on the synaptic transmission, resulting in complex behavioral changes, such as hypoactivity or spatial working memory deficits. These results emerged from studies that focused on rats, after low-dose L-KYNs treatment. However, in several studies neuroprotection was achieved through the administration of high-dose L-KYNs. In the present study, our aim was to investigate whether the systemic administration of a high dose of L-KYNs (300 mg/bwkg; i.p.) would produce alterations in behavioral tasks (open field or object recognition) in C57Bl/6j mice. To evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group of animals we estimated c-Fos expression levels in the corresponding subcortical brain areas. The L-KYNs treatment did not affect the general ambulatory activity of C57Bl/6j mice, whereas it altered their moving patterns, elevating the movement velocity and resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone preference of the open field arena emerged and the rearing activity was attenuated. The treatment also completely abolished the formation of object recognition memory and resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that a single exposure to L-KYNs leads to behavioral disturbances, which might be related to the altered basal c-Fos protein expression in C57Bl/6j mice.

12.
Neurobiol Dis ; 63: 210-21, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24239560

ABSTRACT

Schizophrenia is a devastating neurodevelopmental disorder that affects approximately 1% of the population. Reduced expression of the 67-kDa protein isoform of glutamic acid decarboxylase (GAD67) is a hallmark of the disease and is encoded by the GAD1 gene. In schizophrenia, GAD67 downregulation occurs in multiple interneuronal subpopulations, including the cannabinoid receptor type 1 positive (CNR1+) cells, but the functional consequences of these disturbances are not well understood. To investigate the role of the CNR1-positive GABA-ergic interneurons in behavioral and molecular processes, we employed a novel, miRNA-mediated transgenic mouse approach. We silenced the Gad1 transcript using a miRNA engineered to specifically target Gad1 mRNA under the control of Cnr1 bacterial artificial chromosome. Behavioral characterization of our transgenic mice showed elevated and persistent conditioned fear associated with an auditory cue and a significantly altered response to an amphetamine challenge. These deficits could not be attributed to sensory deficits or changes in baseline learning and memory. Furthermore, HPLC analyses revealed that Cnr1/Gad1 mice have enhanced serotonin levels, but not dopamine levels in response to amphetamine. Our findings demonstrate that dysfunction of a small subset of interneurons can have a profound effect on behavior and that the GABA-ergic, monoamine, and cannabinoid systems are functionally interconnected. The results also suggest that understanding the function of various interneuronal subclasses might be essential to develop knowledge-based treatment strategies for various mental disorders including schizophrenia and substance abuse.


Subject(s)
Behavior, Animal/physiology , Brain/cytology , Exploratory Behavior/physiology , Interneurons/metabolism , Receptor, Cannabinoid, CB1/metabolism , Amphetamine/pharmacology , Analgesics/pharmacology , Animals , Central Nervous System Stimulants/pharmacology , Conditioning, Psychological/physiology , Cyclohexanols/pharmacology , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Locomotion/drug effects , Locomotion/genetics , Mice , Mice, Transgenic , Mutation/genetics , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , RNA, Messenger/metabolism , Receptor, Cannabinoid, CB1/genetics , Sensory Gating/genetics
13.
Neuropathol Appl Neurobiol ; 40(5): 603-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23795719

ABSTRACT

AIMS: Brain ischaemia models are essential to study the pathomechanisms of stroke. Our aim was to investigate the reliability and reproducibility of our novel focal ischaemia-reperfusion model. METHODS: To induce a cortical transient ischaemic attack, we lifted the distal middle cerebral artery (MCA) with a special hook. The early changes after 2 × 15-min occlusion were observed in the somatosensory evoked responses (SERs). The histological responses to 2 × 15-min MCA occlusion and to 30-, 45- or 60-min ischaemia were examined after a 1-day survival period by 2,3,5-triphenyltetrazolium chloride (TTC) and Fluoro Jade C (FJC) staining. Another group, with 30-min ischaemia, was analysed histologically by FJC, S100 and CD11b labelling after a 5-day survival period. RESULTS: The amplitudes of the SERs decreased immediately at the beginning of the ischaemic period, and remained at a reduced level during the ischaemia. Reperfusion resulted in increasing SER amplitudes, but they never regained the control level. The short-lasting ischaemia did not lead to brain infarction when evaluated with TTC, but intense labelling was found with FJC. The 30-min ischaemia did not result in FJC labelling after 1 day, but marked labelling was observed after 5 days with FJC, S100 and CD11b in the cortical area supplied by the MCA. CONCLUSIONS: We present here a novel, readily reproducible method to induce focal brain ischaemia. The ischaemia-reperfusion results in noteworthy changes in the SERs and the appearance of conventional tissue damage markers. This method involves possibilities for precise blood flow regulation, and the setting of the required level of perfusion.


Subject(s)
Brain Ischemia/etiology , Disease Models, Animal , Animals , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Electric Stimulation , Evoked Potentials, Somatosensory , Infarction, Middle Cerebral Artery , Male , Rats , Rats, Wistar , Reproducibility of Results , Somatosensory Cortex/pathology , Somatosensory Cortex/physiopathology
14.
Drug Des Devel Ther ; 7: 981-7, 2013.
Article in English | MEDLINE | ID: mdl-24068867

ABSTRACT

Cortical spreading depression (CSD) involves a slowly-propagating depolarization wave in the cortex, which can appear in numerous pathophysiological conditions, such as migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized transiently during the phenomena. CSD is followed by a massive increase in glutamate release and by changes in the brain microcirculation. The aim of this study was to investigate the effects of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA) and dizocilpine, on CSD and the related blood-brain barrier (BBB) permeability in rats. In intact animals, KYNA hardly crosses the BBB but has some positive features as compared with its precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid). We therefore investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and fluorescent microscopy were used to study the possible changes in the permeability of the BBB. The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number of CSD waves and decrease the permeability of the BBB during CSD. These results suggest that KYNA itself or its derivatives may offer a new approach in the therapy of migraines.


Subject(s)
Blood-Brain Barrier/metabolism , Cortical Spreading Depression/drug effects , Dizocilpine Maleate/pharmacology , Kynurenic Acid/pharmacology , Animals , Electroencephalography , Excitatory Amino Acid Antagonists/administration & dosage , Kynurenic Acid/administration & dosage , Male , Microscopy, Fluorescence , Migraine Disorders/drug therapy , Migraine Disorders/physiopathology , Permeability/drug effects , Rats , Rats, Wistar
15.
J Neural Transm (Vienna) ; 119(2): 151-4, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22231843

ABSTRACT

The concentration of kynurenic acid (KYNA) in the cerebrospinal fluid, which is in the nanomolar range, is known to decrease in epilepsy. The experimental data suggest that treatment with L: -KYN dose dependently increases the concentration of the neuroprotective KYNA in the brain, which itself hardly crosses the blood-brain barrier. However, it is suggested that new synthetic KYNA analogs may readily cross the blood-brain barrier. In this study, we tested the hypothesis that a new KYNA analog administered systemically in a sufficient dose results in a decreased population spike activity recorded from the pyramidal layer of area CA1 of the hippocampus, and also provides protection against pentylenetetrazole-induced epileptiform seizures.


Subject(s)
Kynurenic Acid/analogs & derivatives , Kynurenic Acid/therapeutic use , Kynurenine , Pentylenetetrazole/toxicity , Seizures/prevention & control , Action Potentials/drug effects , Action Potentials/physiology , Animals , Kynurenic Acid/pharmacology , Male , Pentylenetetrazole/antagonists & inhibitors , Rats , Rats, Sprague-Dawley , Seizures/chemically induced , Seizures/physiopathology
16.
J Neural Transm (Vienna) ; 119(2): 165-72, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21818601

ABSTRACT

The neuroactive properties and neuroprotective potential of endogenous L: -kynurenine, kynurenic acid (KYNA) and its derivatives are well established. KYNA acts as an antagonist on the obligatory co-agonist glycine site, and has long been at the focus of neuroprotective trials. Unfortunately, KYNA is barely able to cross the blood-brain barrier. Accordingly, the development and synthesis of KYNA analogs which can readily cross the BBB have been at the focus of research interest with the aim of neuroprotection. Earlier we reported a new KYNA-amide crosses the BBB and proved neuroprotective in several experiments. In the present study, we investigated the locomotor activity, working memory performance, and also the long-lasting, consolidated reference memory of animals treated intraperitoneally (i.p.) with the novel analog. The effects of the novel analog on the spatial orientation and learning ability of rats were assessed in the Morris water maze (MWM) paradigm. The effects on locomotor activity of mice was assessed in the open field (OF) paradigm, and those on the spatial orientation and learning ability of mice were investigated in the radial arm maze (RAM) paradigm. It emerged that there is a dose of this KYNA-amide which is neuroprotective, but does not worsen the cognitive function of the brain. This result is significant in that a putative neuroprotectant without adverse cognitive side-effects is of great benefit.


Subject(s)
Kynurenic Acid/analogs & derivatives , Kynurenic Acid/pharmacology , Maze Learning/drug effects , Motor Activity/drug effects , Neuroprotective Agents/pharmacology , Amides/chemical synthesis , Amides/pharmacology , Animals , Kynurenic Acid/chemical synthesis , Male , Maze Learning/physiology , Mice , Motor Activity/physiology , Neuroprotective Agents/chemical synthesis , Rats , Rats, Wistar
17.
Eur J Pharmacol ; 667(1-3): 182-7, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21664350

ABSTRACT

Global forebrain ischemia results in damage to the pyramids in the CA1 hippocampal subfield, which is particularly vulnerable to excitotoxic processes. Morphological and functional disintegration of this area leads to a cognitive dysfunction and neuropsychiatric disorders. Treatment with N-methyl-d-aspartate receptor antagonists is a widely accepted method with which to stop the advance of excitotoxic processes and concomitant neuronal death. From a clinical aspect, competitive glycine- and polyamine-site antagonists with relatively low affinity and moderate side-effects are taken into account. Endogenous kynurenic acid acts as an antagonist on the obligatory co-agonist glycine site, and has long been at the focus of neuroprotective trials. In the present study, we estimated the neuroprotective capability of a novel kynurenic acid analog in transient global forebrain ischemia, measuring the rate of hippocampal CA1 pyramidal cell loss and the preservation of long-term potentiation at Schaffer collateral-CA1 synapses. The neuroprotective potential was reflected by a significantly diminished hippocampal CA1 cell loss and preserved long-term potentiation expression. The neuroprotective effect was robust in the event of pretreatment, and also when the drug was administered at the time of reperfusion. This result is beneficial since a putative neuroprotectant proven to be effective as post-treatment is of much greater benefit.


Subject(s)
Brain Ischemia/drug therapy , Carotid Arteries/surgery , Kynurenic Acid/analogs & derivatives , Kynurenic Acid/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Animals , Brain Ischemia/etiology , Brain Ischemia/pathology , Brain Ischemia/physiopathology , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/physiopathology , Cell Count , Disease Models, Animal , Electric Stimulation , In Vitro Techniques , Kynurenic Acid/therapeutic use , Long-Term Potentiation/drug effects , Male , Neuroprotective Agents/therapeutic use , Rats , Rats, Wistar , Synapses/drug effects , Synapses/physiology
18.
J Neurovirol ; 14(2): 164-72, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18444088

ABSTRACT

Herpes simplex viruses (HSV) produce age-dependent encephalitis characterized by more severe involvement of the cerebral cortex in younger hosts. To elucidate the potential role of the major neural entry receptor of HSV, nectin-1, in age-dependent susceptibility of cortical neurons to viral encephalitis, the authors examined the anatomical distribution of the receptor protein in the developing human and mouse cerebral cortex, hippocampus, and cerebellum by immunohistochemistry. Nectin-1 is expressed at high levels in guiding cells (radial glial cells and Cajal-Retzius cells) that regulate radial migration of neurons in cortical lamination, at lower levels in migrating neurons, and at variable levels in the transient ventricular and marginal zones of the cerebral cortical wall. These results may have implications regarding the selective spatiotemporal tropism of HSV to specific neuronal populations, and for the better understanding of neurodevelopmental defects caused by fetal HSV infections.


Subject(s)
Brain/cytology , Cell Adhesion Molecules/metabolism , Cerebellum/cytology , Cerebral Cortex/cytology , Neurons/metabolism , Animals , Cell Movement , Cerebral Cortex/embryology , Female , Ganglia/metabolism , Humans , Mice , Nectins , Neuroglia/cytology , Neuroglia/metabolism , Neuroglia/physiology , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...