Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Microbiol ; 285: 109867, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37639898

ABSTRACT

Duck Tembusu virus (DTMUV) has caused significant economic losses to the global duck industry since its outbreak in 2010. The macrophages act as the key immune cell, and its polarization in different functional states is very important for host's immune responses and microbial infections. Avian macrophages are the main target cells of DTMUV, its polarization induced by DTMUV and the underlying mechanisms were explored in this study. Through quantitative real-time PCR, nitrite assay, and flow cytometry analysis, we found that DTMUV caused severe inflammatory responses in chicken macrophage line HD11 by reprogramming the expression of M1- and M2-associated genes, leading to the polarization of HD11 macrophage to M1-type. In term of mechanism, transcriptomics was performed to analyze the M1-type polarization triggered by DTMUV, it was found that most differential genes were implicated in biological processes, and DTMUV infection significantly activated innate immune signaling pathways, including cytokine-cytokine receptor interaction, MAPK signaling pathway. Moreover, transcription factors NF-κB and AP1 also be activated after viral infection. However, further validation analysis by inhibitors and siRNAs of NF-κB and AP1 showed that NF-κB molecule was essential for DTMUV-induced M1 polarization in HD11 cell, but not AP1. Additionally, the inhibiting assays targeting MyD88 and TRIF molecules were conducted to determine their effect on NF-κB and M1-associated genes upregulated by DTMUV. The results showed that although the inhibition of both MyD88 and TRIF significantly downregulated the mRNA level of NF-κB, but the expression of M1-associated genes such as CD86 was lower in MyD88 inhibition group than in the other group, indicating that the role of MyD88 in mediating M1 polarization induced by DTMUV was more important. Overall, these results demonstrated that DTMUV infection induces M1-type polarization in chicken macrophage HD11 through MyD88-NF-κB signaling pathways. This finding will lay the foundation for further study the pathogenesis of DTMUV, and provide new insights into the prevention and control of this disease.

2.
Poult Sci ; 102(7): 102759, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37209657

ABSTRACT

Infectious serositis is a common disease caused by Riemerella anatipestifer (R. anatipestifer) in ducks, characterized by respiratory distress, septicemia, and neurological symptoms. In this study, 1,020 samples (brain and liver) were collected from ducks with suspected R. anatipestifer infection from March 2020 to March 2022 in Shandong Province, of which 171 R. anatipestifer strains were identified by PCR and isolation culture. The serotype of all strains was analyzed, and 74 strains were subjected to drug sensitivity tests and drug resistance genes detection. The results showed that the overall prevalence rate of R. anatipestifer in Shandong Province was 16.7% (171/1,020), with most strains coming from brain samples of ducklings under 3-mo old collected from September to December each year. Histopathological examination showed that heart vessels of the diseased duck were highly dilated and filled with red blood cells, with obvious fibrin exudates outside the pericardium, and fatty degeneration of liver cells. There were 45 strains of serotype 1, 45 strains of serotype 2, 2 strains of serotype 4, 33 strains of serotype 6, 44 strains of serotype 7, and 2 strains of serotype 10. The minimum inhibitory concentration (MIC) of 10 common antibiotics against 74 representative strains was determined by the agar dilution method. It was found that 74 strains had the most severe resistance to gentamicin (77%) and fully susceptible to ceftriaxone, but the 81.1% isolated strains were multidrug resistant. Resistance genes testing of 74 R. anatipestifers showed that tetracycline resistance gene tet X had the highest detection rate of 95.9%, followed by macrolide resistance gene ermF with 77%, and the rate of ß-lactam resistance gene blaTEM is the lowest (10.8%). The animal experiment of 4 R. anatipestifer strains with different serotypes showed that they had strong pathogenicity to 7-day-old ducklings, which could cause nervous symptoms, and the mortality rate was 58% to 70%. The autopsy showed obvious pathological changes. These findings of this study on R. anatipestifer will help us to understand the latest prevalence, drug resistance characteristics, and pathogenicity of R. anatipestifer in Shandong, China, and provide a scientific guide for the treatment and control of the disease.


Subject(s)
Flavobacteriaceae Infections , Poultry Diseases , Riemerella , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Drug Resistance, Bacterial/genetics , Ducks/microbiology , Farms , Flavobacteriaceae Infections/epidemiology , Flavobacteriaceae Infections/veterinary , Macrolides , Poultry Diseases/epidemiology , Riemerella/genetics
3.
Vet Sci ; 10(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37104419

ABSTRACT

Chicken infectious anemia (CIA) is a vertical transmission infectious chicken disease caused by the chicken infectious anemia virus (CAV). The disease can induce stunting and immunosuppression in chicks by infecting bone marrow-derived stem cells, causing huge economic losses for the poultry industry. To determine the prevalence of CIA in Shandong Province, China, 854 suspected CIA samples were collected and analyzed in 13 cities in Shandong from 2020 to 2022. The PCR results showed that a total of 115 CAV were isolated. The CAV-positive rates were 17.21% (26/151) in 2020, 12.23% (35/286) in 2021, and 12.94% (54/417) in 2022, with severe mixed infections. Among them, CAV and fowl adenovirus (FAdV) were the most common, accounting for 40.86%. VP1 gene homology analysis showed that isolated strains shared 96.1-100% homology with the previously reported CAV strains. Genetic variation analysis showed that most of the isolated CAV strains were located in genotype A. These results indicate that CIA infection in Shandong chickens in recent years has been prevalent and mixed infections are common, but there were no significant genetic variations. Our results extend the understanding of the prevalence and genetic evolution of CIA in Shandong Province. They will offer new references for further study of the epidemiology and virus variation and the prevention and control of this disease.

4.
Front Vet Sci ; 9: 1015717, 2022.
Article in English | MEDLINE | ID: mdl-36246337

ABSTRACT

Responsible for the acute infectious disease porcine epidemic diarrhea (PED), PED virus (PEDV) induces severe diarrhea and high mortality in infected piglets and thus severely harms the productivity and economic efficiency of pig farms. In our study, we aimed to investigate and analyze the recent status and incidence pattern of PEDV infection in some areas of Shandong Province, China. We collected 176 clinical samples of PED from pig farms in different regions of Shandong Province during 2019-2021. PEDV, TGEV, and PORV were detected using RT-PCR. The full-length sequences of positive PEDV S genes were amplified, the sequences were analyzed with MEGA X and DNAStar, and a histopathological examination of typical PEDV-positive cases was performed. RT-PCR revealed positivity rates of 37.5% (66/176) for PEDV, 6.82% (12/176) for transmissible gastroenteritis virus, and 3.98% (7/176) for pig rotavirus. The test results for the years 2019, 2020, and 2021 were counted separately, PEDV positivity rates for the years were 34.88% (15/43), 39.33% (35/89), and 36.36% (16/44), respectively. Histopathological examination revealed atrophied, broken, and detached duodenal and jejunal intestinal villi, as typical of PED, and severe congestion of the intestinal submucosa. Moreover, the results of our study clearly indicate that the G2 subtype is prevalent as the dominant strain of PEDV in Shandong Province, where its rates of morbidity and mortality continue to be high. Based on a systematic investigation and analysis of PEDV's molecular epidemiology across Shandong Province, our results enrich current epidemiological data regarding PEDV and provide some scientific basis for preventing and controlling the disease.

5.
Poult Sci ; 101(10): 102103, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36041385

ABSTRACT

To investigate the prevalence of avian hepatitis E virus (HEV) in chickens and gather evidence of viral vertical transmission, we collected 288 cloacal swabs and 288 yolks samples from 12 farms with clinically healthy chickens in 4 different areas in Tai'an City, Shandong Province, China (i.e., Daiyue District, Xintai City, Feicheng City, and Ningyang County). We also collected 240 samples from 2 breeder farms (from each of which 30 chicks, 30 dead embryos, 30 live embryos, and 30 hatching eggs were taken). PCR detection revealed that the positive rates of cloacal swabs and yolks were 6.25% (18/288) and 4.51% (13/288), respectively. Besides, avian HEV was detected with higher positive rates in the chicks (11.67%), hatching eggs (10.00%), live embryos (13.33%), and dead embryos (26.67%) from 2 breeder farms. Sequence and genetic evolution analyses revealed that the nucleotide homology of the isolated strains was 76.4to 83.9% compared with 4 reported genotypes, but the isolated strains were located in a separate branch, indicating they were potential novel genotypes. In conclusion, those results indicate that the latent infection of avian HEV novel genotypes has been widespread in chicken farms in Tai'an City, and provide reliable evidence of the possible vertical transmission of avian HEV.


Subject(s)
Hepevirus , Poultry Diseases , Animals , Chickens/genetics , China/epidemiology , Genotype , Hepevirus/genetics , Nucleotides , Ovum/chemistry , Phylogeny , Prevalence , RNA, Viral/genetics
6.
Front Immunol ; 13: 746890, 2022.
Article in English | MEDLINE | ID: mdl-35185869

ABSTRACT

Despite autophagy's pivotal role in the replication of viruses such as duck Tembusu virus (DTMUV), which has caused massive economic losses to the poultry industry in the world, the specific relationships between DTMUV and cellular autophagy remain largely unknown. In response, we investigated the interactions between autophagy and DTMUV, the effects of the structural and non-structural proteins of DTMUV on autophagy, and the autophagy-related signaling pathways induced by DTMUV. Among the results, DTMUV increased the autophagy flux in duck embryo fibroblasts (DEF) and BHK-21 cells, while autophagy facilitated viral replication. After we pharmacologically induced autophagy with rapamycin (RAPA), the replication of DTMUV increased by 15.23-fold compared with the control group of DEF cells. To identify which DTMUV protein primarily induced autophagy, all three structural proteins and seven non-structural proteins of DTMUV were transfected into cells, and the results showed that non-structural protein 3 (NS3) induced significant autophagy in DEF cells. By means of Western blot, immunofluorescence, and transmission electron microscopy, we confirmed that NS3 protein could significantly induce autophagy and autophagy flux. Furthermore, we showed that NS3 induced autophagy in DEF cells through extracellular signal-regulated kinase 2 (ERK2) and phosphatidylinositol-3-kinase (PI3K)/AKT and the mammalian target of rapamycin (mTOR) signaling pathways using specific inhibitors and RNA interference assays. Finally, autophagy induced by NS3 promoted DTMUV replication. These results provide novel insight into the relationship between DTMUV and autophagy, broadening the current understanding of the molecular pathogenesis of DTMUV.


Subject(s)
Autophagy , Flavivirus/physiology , Signal Transduction/physiology , Viral Nonstructural Proteins/metabolism , Virus Replication , Animals , Cell Line , Cricetinae/virology , Ducks/virology , Fibroblasts/virology , Mitogen-Activated Protein Kinase 1/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA Helicases/metabolism , Serine Endopeptidases/metabolism , TOR Serine-Threonine Kinases/metabolism
7.
BMC Vet Res ; 18(1): 56, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35078465

ABSTRACT

BACKGROUND: Avian hepatitis E virus (HEV) is the pathogenic agent of big liver and spleen disease (BLS) and of hepatitis-splenomegaly syndrome (HSS) in chickens, which have caused economic losses to the poultry industry in China. In this study, 18 samples of BLS chickens were collected to reveal the molecular epidemiological characteristics of avian HEV in the province of Shandong, China. RESULTS: Gross and microscopic lesions of clinical samples were observed; then, virology detection and genetic analysis of avian HEV were performed. The results showed that there was significant swelling and rupture in the liver and that the spleen was enlarged. Microscopic lesions demonstrated obvious hemorrhage in the liver, with infiltration of heterophilic granulocytes, lymphocytes, and macrophages, as well as the reduction of lymphocytes in the spleen. Eleven of the 18 samples were positive for avian HEV, with a positive rate of 61.11%. More importantly, all avian HEV-positive samples were mixed infections: among these, the mixed infections of avian HEV and chicken infectious anemia virus (CIAV) and avian HEV and fowl adenovirus (FAdV) were the most common. Furthermore, the genetic evolution analysis showed that all avian HEV strains obtained here did not belong to the reported 4 genotypes, thus constituting a potential novel genotype. CONCLUSIONS: These results of this study further enrich the epidemiological data on avian HEV in Shandong, prove the genetic diversity of avian HEV in China, and uncover the complex mixed infections of avian HEV clinical samples.


Subject(s)
Coinfection , Hepatitis E , Hepatitis, Viral, Animal , Poultry Diseases , Animals , Chickens , China/epidemiology , Coinfection/veterinary , Hepatitis E/epidemiology , Hepatitis E/veterinary , Hepatitis, Viral, Animal/diagnosis , Hepatitis, Viral, Animal/epidemiology , Hepevirus/genetics , Molecular Epidemiology , Phylogeny , Poultry Diseases/diagnosis , Poultry Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...