Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 177
1.
J Am Chem Soc ; 146(20): 14203-14212, 2024 May 22.
Article En | MEDLINE | ID: mdl-38733560

Nanomedicines often rely on noncovalent self-assembly and encapsulation for drug loading and delivery. However, challenges such as reproducibility issues due to the multicomponent nature, off-target activation caused by premature drug release, and complex pharmacokinetics arising from assembly dissociation have hindered their clinical translation. In this study, we introduce an innovative design concept termed single molecular nanomedicine (SMNM) based on macrocyclic carrier-drug conjugates. Through the covalent linkage of two chemotherapy drugs to a hypoxia-cleavable macrocyclic carrier, azocalix[4]arene, we obtained two self-included complexes to serve as SMNMs. The intramolecular inclusion feature of the SMNMs has not only demonstrated comprehensive shielding and protection for the drugs but also effectively prevented off-target drug leakage, thereby significantly reducing their side effects and enhancing their antitumor therapeutic efficacy. Additionally, the attributes of being a single component and molecularly dispersed confer advantages such as ease of preparation and good reproducibility for SMNMs, which is desirable for clinical applications.


Antineoplastic Agents , Calixarenes , Drug Carriers , Nanomedicine , Humans , Drug Carriers/chemistry , Nanomedicine/methods , Calixarenes/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Animals , Macrocyclic Compounds/chemistry , Mice , Cell Line, Tumor , Drug Liberation
2.
ACS Nano ; 18(20): 13117-13129, 2024 May 21.
Article En | MEDLINE | ID: mdl-38727027

The complexity, heterogeneity, and drug resistance of diseases necessitate a shift in therapeutic paradigms from monotherapy to combination therapy, which could augment treatment efficiency. Effective treatment of advanced osteoarthritis (OA) requires addressing three key factors contributing to its deterioration: chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation. Herein, we present a supramolecular nanomedicine of multifunctionality via molecular recognition and self-assembly. The employed macrocyclic carrier, zwitterion-modified cavitand (CV-2), not only accurately loads various drugs but also functions as a therapeutic agent with lubricating properties for the treatment of OA. Kartogenin (KGN), a drug for articular cartilage regeneration and protection, and flurbiprofen (FP), an anti-inflammatory agent, were coloaded onto CV-2 assembly, forming a supramolecular nanomedicine KGN&FP@CV-2. The three-in-one combination therapy of KGN&FP@CV-2 addresses the three pathological features for treating OA collectively, and thus provides long-term therapeutic benefits for OA through sustained drug release and intrinsic lubrication in vivo. The multifunctional integration of macrocyclic delivery and therapeutics provides a simple, flexible, and universal platform for the synergistic treatment of diseases involving multiple drugs.


Flurbiprofen , Osteoarthritis , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Animals , Flurbiprofen/chemistry , Flurbiprofen/administration & dosage , Flurbiprofen/pharmacology , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Drug Delivery Systems , Humans , Drug Carriers/chemistry , Lubrication , Drug Liberation , Mice , Male , Anilides
3.
Chem Sci ; 15(21): 7811-7823, 2024 May 29.
Article En | MEDLINE | ID: mdl-38817563

Complex diseases and diverse clinical needs necessitate drug delivery systems (DDSs), yet the current performance of DDSs is far from ideal. Supramolecular interactions play a pivotal role in various aspects of drug delivery, encompassing biocompatibility, drug loading, stability, crossing biological barriers, targeting, and controlled release. Nevertheless, despite having some understanding of the role of supramolecular interactions in drug delivery, their incorporation is frequently overlooked in the design and development of DDSs. This perspective provides a brief analysis of the involved supramolecular interactions in the action of drug delivery, with a primary emphasis on the DDSs employed in the clinic, mainly liposomes and polymers, and recognized phenomena in research, such as the protein corona. The supramolecular interactions implicated in various aspects of drug delivery systems, including biocompatibility, drug loading, stability, spatiotemporal distribution, and controlled release, were individually analyzed and discussed. This perspective aims to trigger a comprehensive and systematic consideration of supramolecular interactions in the further development of DDSs. Supramolecular interactions embody the true essence of the interplay between the majority of DDSs and biological systems.

4.
Bioresour Technol ; 402: 130801, 2024 Jun.
Article En | MEDLINE | ID: mdl-38710419

The construction of aerobic denitrification (AD) systems in an antibiotic-stressed environment is a serious challenge. This study investigated strategy of cyclic stress with concentration gradient (5-30 mg/L) of sulfamethoxazole (SMX) in a sequencing batch reactor (SBR), to achieve operation of AD. Total nitrogen removal efficiency of system increased from about 10 % to 95 %. Original response of abundant-rare genera to antibiotics was changed by SMX stress, particularly conditionally rare or abundant taxa (CRAT). AD process depends on synergistic effect of heterotrophic nitrifying aerobic denitrification bacteria (Paracoccus, Thauera, Hypomicrobium, etc). AmoABC, napA, and nirK were functionally co-expressed with multiple antibiotic resistance genes (ARGs) (acrR, ereAB, and mdtO), facilitating AD process. ARGs and TCA cycling synergistically enhance the antioxidant and electron transport capacities of AD process. Antibiotic efflux pump mechanism played an important role in operation of AD. The study provides strong support for regulating activated sludge to achieve in situ AD function.


Bioreactors , Denitrification , Sulfamethoxazole , Sulfamethoxazole/pharmacology , Aerobiosis , Sewage/microbiology , Anti-Bacterial Agents/pharmacology , Nitrogen/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/drug effects , Stress, Physiological/drug effects
5.
World J Gastroenterol ; 30(12): 1764-1776, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38617741

BACKGROUND: Increasing evidence has demonstrated that N6-methyladenosine (m6A) RNA modification plays an essential role in a wide range of pathological conditions. Impaired autophagy is a critical hallmark of acute pancreatitis (AP). AIM: To explore the role of the m6A modification of ZKSCAN3 in the regulation of autophagy in AP. METHODS: The AP mouse cell model was established by cerulein-treated mouse pancreatic acinar cells (MPC-83), and the results were confirmed by the levels of amylase and inflammatory factors. Autophagy activity was evaluated by specific identification of the autophagy-related microstructure and the expression of autophagy-related genes. ZKSCAN3 and ALKBH5 were knocked down to study the function in AP. A m6A RNA binding protein immunoprecipitation assay was used to study how the m6A modification of ZKSCAN3 mRNA is regulated by ALKBH. RESULTS: The increased expression of amylase and inflammatory factors in the supernatant and the accumulation of autophagic vacuoles verified that the AP mouse cell model was established. The downregulation of LAMP2 and upregulation of LC3-II/I and SQSTM1 demonstrated that autophagy was impaired in AP. The expression of ZKSCAN3 was upregulated in AP. Inhibition of ZKSCAN3 increased the expression of LAMP2 and decreased the expression of the inflammatory factors, LC3-II/I and SQSTM1. Furthermore, ALKBH5 was upregulated in AP. Knockdown of ALKBH5 downregulated ZKSCAN3 expression and restored decreased autophagic flux in AP. Notably, the bioinformatic analysis revealed 23 potential m6A modification sites on ZKSCAN3 mRNA. The m6A modification of ZKSCAN3 mRNA was significantly decreased in AP. Knockdown of ALKBH5 increased the modification of ZKSCAN3 mRNA, which confirmed that ALKBH5 upregulated ZKSCAN3 expression in a m6A-dependent manner. CONCLUSION: ALKBH5 inhibits autophagic flux through m6A demethylation of ZKSCAN3 mRNA in AP, thereby aggravating the severity of the disease.


Pancreatitis , Animals , Mice , Acute Disease , Adenosine/pharmacology , Amylases , Autophagy , Demethylation , Disease Models, Animal , Pancreatitis/chemically induced , Pancreatitis/genetics , RNA, Messenger , Sequestosome-1 Protein , Transcription Factors
6.
ACS Appl Mater Interfaces ; 16(17): 22391-22402, 2024 May 01.
Article En | MEDLINE | ID: mdl-38647046

Nowadays, flexible multifunctional composites are attracting much attention and are practically being used in various emerging electronic devices. However, most composites suffer from the disadvantages of high loadings of conductive fillers, complicated preparation processes, and low energy conversion efficiency. In this article, Caffeic acid-modified multiwalled carbon nanotubes (C-MWCNTs)/poly(3,4-ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS)/polyimide (PI) composite films (CPFs) were prepared using a simple layer-by-layer deposition method. The "reinforced concrete" structure of the C-MWCNTs/PEDOT:PSS layer ensures high electrical conductivity of the film, while the PI layer provides excellent mechanical properties (72.69 MPa). The composite film exhibits excellent electrothermal response and thermal stability up to approximately 125 °C at 5 V. In addition, the good conductivity of the film provides its electromagnetic shielding effectiveness (32.69 dB). With these advantages, we expect that flexible CPFs will be widely utilized in wearable devices, electromagnetic interference (EMI) shielding applications, and thermal management of personal or electronic devices.

7.
Angew Chem Int Ed Engl ; 63(23): e202402139, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38563765

The development of artificial receptors that combine ultrahigh-affinity binding and controllable release for active guests holds significant importance in biomedical applications. On one hand, a complex with an exceedingly high binding affinity can resist unwanted dissociation induced by dilution effect and complex interferents within physiological environments. On the other hand, stimulus-responsive release of the guest is essential for precisely activating its function. In this context, we expanded hydrophobic cavity surface of a hypoxia-responsive azocalix[4]arene, affording Naph-SAC4A. This modification significantly enhanced its aqueous binding affinity to 1013 M-1, akin to the naturally occurring strongest recognition pair, biotin/(strept-)avidin. Consequently, Naph-SAC4A emerges as the first artificial receptor to simultaneously integrate ultrahigh recognition affinity and actively controllable release. The markedly enhanced affinity not only improved Naph-SAC4A's sensitivity in detecting rocuronium bromide in serum, but also refined the precision of hypoxia-responsive doxorubicin delivery at the cellular level, demonstrating its immense potential for diverse practical applications.


Avidin , Biotin , Calixarenes , Hydrophobic and Hydrophilic Interactions , Calixarenes/chemistry , Biotin/chemistry , Avidin/chemistry , Avidin/metabolism , Humans , Surface Properties , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/metabolism , Delayed-Action Preparations/chemistry , Phenols/chemistry
8.
Surg Endosc ; 38(5): 2788-2794, 2024 May.
Article En | MEDLINE | ID: mdl-38587640

AIM: To analyze efficacy of endoscopic lithotripsy combined with drug lithotripsy as compared with drug lithotripsy for the treatment of phytobezoars. METHODS: We collected and evaluated case records of 165 patients with phytobezoars from 2014 to 2023. And we analyzed demographic and clinical characteristics, imaging features, endoscopic features, complications of phytobezoars, and compared efficacy between endoscopic lithotripsy combined with drug lithotripsy (Group A) and drug lithotripsy (sodium bicarbonate combined with proton pump inhibitor) (Group B). RESULTS: The median age of patients with phytobezoars was 67.84 ± 4.286 years old. Abdominal pain was the most common symptom and peptic ulcers (67.5%) were the most common complication. Bezoar-induced ulcers were more frequent in the gastric angle. The success rate of phytobezoars vanishing in Group A and Group B were similar (92.3% vs. 85.1% within 48 h, 98.7% vs. 97.7% within a week), while the average hospitalization period, average hospitalization cost, second endoscopy rate, and average endoscopic operation time were significantly lower in patients in Group B than in Group A. CONCLUSION: Drug lithotripsy is the preferred effective and safe treatment option for phytobezoars. We advise that an endoscopy should be completed after 48 h for drug lithotripsy.


Bezoars , Lithotripsy , Humans , Bezoars/therapy , Male , Female , Lithotripsy/methods , Aged , Middle Aged , Retrospective Studies , Proton Pump Inhibitors/therapeutic use , Proton Pump Inhibitors/administration & dosage , Treatment Outcome , Sodium Bicarbonate/administration & dosage , Sodium Bicarbonate/therapeutic use , Combined Modality Therapy , Abdominal Pain/etiology , Abdominal Pain/therapy
9.
J Colloid Interface Sci ; 665: 376-388, 2024 Jul.
Article En | MEDLINE | ID: mdl-38537586

With the popularization of 5G technology and the development of science and technology, flexible and transparent conductive films (TCF) are increasingly used in the preparation of optoelectronic devices such as electromagnetic shielding devices, transparent flexible heaters, and solar cells. Silver nanowires (AgNW) are considered the best material for replacing indium tin oxide to prepare TCFs due to their excellent comprehensive properties. However, the loose overlap between AgNWs is a significant reason for the high resistance. This article investigates a sandwich structured conductive network composed of AgNW and Ti3C2Tx MXene for high-performance EMI shielding and transparent electrical heaters. Polyethylene pyrrolidone (PVP) solution was used to hydrophilic modify PET substrate, and then MXene, AgNW, and MXene were assembled layer by layer using spin coating method to form a TCF with a sandwich structure. One-dimensional AgNW is used to provide electron transfer channels and improve light penetration, while two-dimensional MXene nanosheets are used for welding AgNWs and adding additional conductive channels. The flexible TCF has excellent transmittance (85.1 % at 550 nm) and EMI shielding efficiency (27.1 dB). At the voltage of 5 V, the TCF used as a heater can reach 85.6 °C. This work offers an innovative approach to creating TCFs for the future generation.

10.
J Control Release ; 368: 691-702, 2024 Apr.
Article En | MEDLINE | ID: mdl-38492860

Host-guest drug delivery systems (HGDDSs) provided a facile method for incorporating biomedical functions, including efficient drug-loading, passive targeting, and controlled drug release. However, developing HGDDSs with active targeting is hindered by the difficult functionalization of popular macrocycles. Herein, we report an active targeting HGDDS based on biotin-modified sulfonated azocalix[4]arene (Biotin-SAC4A) to efficiently deliver drug into cancer cells for improving anti-tumor effect. Biotin-SAC4A was synthesized by amide condensation and azo coupling. Biotin-SAC4A demonstrated hypoxia responsive targeting and active targeting through azo and biotin groups, respectively. DOX@Biotin-SAC4A, which was prepared by loading doxorubicin (DOX) in Biotin-SAC4A, was evaluated for tumor targeting and therapy in vitro and in vivo. DOX@Biotin-SAC4A formulation effectively killed cancer cells in vitro and more efficiently delivered DOX to the lesion than the similar formulation without active targeting. Therefore, DOX@Biotin-SAC4A significantly improved the in vivo anti-tumor effect of free DOX. The facilely prepared Biotin-SAC4A offers strong DOX complexation, active targeting, and hypoxia-triggered release, providing a favorable host for effective breast cancer chemotherapy in HGDDSs. Moreover, Biotin-SAC4A also has potential to deliver agents for other therapeutic modalities and diseases.


Antineoplastic Agents , Breast Neoplasms , Humans , Female , Biotin , Drug Delivery Systems/methods , Doxorubicin , Breast Neoplasms/drug therapy , Hypoxia/drug therapy , Cell Line, Tumor , Drug Liberation
11.
Sci Total Environ ; 926: 171978, 2024 May 20.
Article En | MEDLINE | ID: mdl-38537813

Low temperatures limit the denitrification wastewater in activated sludge systems, but this can be mitigated by addition of redox mediators (RMs). Here, the effects of chlorophyll (Chl), 1,2-naphthoquinone-4-sulfonic acid (NQS), humic acid (HA), and riboflavin (RF), each tested at three concentrations, were compared for denitrification performance at low temperature, by monitoring the produced extracellular polymeric substances (EPS), and characterizing microbial communities and their metabolic potential. Chl increased the denitrification rate most, namely 4.12-fold compared to the control, followed by NQS (2.62-fold increase) and HA (1.35-fold increase), but RF had an inhibitory effect. Chl promoted the secretion of tryptophan-like and tyrosine-like proteins in the EPS and aided the conversion of protein from tightly bound EPS into loosely bound EPS, which improved the material transfer efficiency. NQS, HA, and RF also altered the EPS components. The four RMs affected the microbial community structure, whereby both conditionally abundant taxa (CAT) and conditionally rare or abundant taxa (CRAT) were key taxa. Among them, CRAT members interacted most with the other taxa. Chl promoted Flavobacterium enrichment in low-temperature activated sludge systems. In addition, Chl promoted the abundance of nitrate reduction genes narGHI and napAB and of nitrite reduction genes nirKS, norBC, and nosZ. Moreover, Chl increased abundance of genes involved in acetate metabolism and in the TCA cycle, thereby improving carbon source utilization. This study increases our understanding of the enhancement of low-temperature activated sludge by RMs, and demonstrates positive effects, in particular by Chl.


Microbiota , Sewage , Sewage/microbiology , Denitrification , Polymers/chemistry , Temperature , Oxidation-Reduction , Bioreactors/microbiology , Nitrogen
12.
J Multidiscip Healthc ; 17: 711-721, 2024.
Article En | MEDLINE | ID: mdl-38380070

Purpose: A better understanding of the factors that influence engagement is needed to provide a reference for conducting genetic testing in female relatives of patients with hemophilia (PWH). We therefore determined the perceptions and understanding of genetic testing among female relatives of PWH in China. Methods: We carried out a qualitative study using in-depth, semi-structured interviews with 11 female relatives of PWH in Shanxi Province, China. The resulting data were analyzed using thematic analyses. Results: This study extracted four topics: uncertainty about carrier genetic status; limited understanding of genetic testing; coexistence of positive and negative coping; and multi-aspect demands. Conclusion: Healthcare professionals should provide personalized and multidimensional health education and comprehensive decision-making support to female relatives of PWH, to enhance their motivation and willingness to undergo genetic testing. It is also important to actively improve relevant policies, strengthen the genetic testing service system, and promote the popularization of genetic testing in female relatives of PWH.

13.
Nat Commun ; 15(1): 1417, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38360963

Biotechnological plastic recycling has emerged as a suitable option for addressing the pollution crisis. A major breakthrough in the biodegradation of poly(ethylene terephthalate) (PET) is achieved by using a LCC variant, which permits 90% conversion at an industrial level. Despite the achievements, its applications have been hampered by the remaining 10% of nonbiodegradable PET. Herein, we address current challenges by employing a computational strategy to engineer a hydrolase from the bacterium HR29. The redesigned variant, TurboPETase, outperforms other well-known PET hydrolases. Nearly complete depolymerization is accomplished in 8 h at a solids loading of 200 g kg-1. Kinetic and structural analysis suggest that the improved performance may be attributed to a more flexible PET-binding groove that facilitates the targeting of more specific attack sites. Collectively, our results constitute a significant advance in understanding and engineering of industrially applicable polyester hydrolases, and provide guidance for further efforts on other polymer types.


Hydrolases , Polyethylene Terephthalates , Hydrolases/metabolism , Polyethylene Terephthalates/chemistry , Polymers
14.
Appl Microbiol Biotechnol ; 108(1): 246, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38421403

Grifola frodosa polysaccharides, especially ß-D-glucans, possess significant anti-tumor, antioxidant and immunostimulatory activities. However, the synthesis mechanism remains to be elucidated. A newly discovered glycosyltransferase UGT88A1 was found to extend glucan chains in vitro. However, the role of UGT88A1 in the growth and polysaccharide synthesis of G. frondosa in vivo remains unclear. In this study, the overexpression of UGT88A1 improved mycelial growth, increased polysaccharide production, and decreased cell wall pressure sensitivity. Biomass and polysaccharide production decreased in the silenced strain, and the pressure sensitivity of the cell wall increased. Overexpression and silencing of UGT88A1 both affected the monosaccharide composition and surface morphology of G. frondosa polysaccharides and influenced the antioxidant activity of polysaccharides from different strains. The messenger RNA expression of glucan synthase (GLS), UTP-glucose-1-phosphate uridylyltransferase (UGP), and UDP-xylose-4-epimerase (UXE) related to polysaccharide synthesis, and genes related to cell wall integrity increased in the overexpression strain. Overall, our study indicates that UGT88A1 plays an important role in the growth, stress, and polysaccharide synthesis of G. frondosa, providing a reference for exploring the pathway of polysaccharide synthesis and metabolic regulation. KEY POINTS: •UGT88A1 plays an important role in the growth, stress response, and polysaccharide synthesis in G. frondosa. •UGT88A1 affected the monosaccharide composition, surface morphology and antioxidant activity of G. frondosa polysaccharides. •UGT88A1 regulated the mRNA expression of genes related to polysaccharide synthesis and cell wall integrity.


Grifola , Pyridines , Urea/analogs & derivatives , Antioxidants , Glucans , Glycosyltransferases/genetics , Monosaccharides
15.
Brain Sci ; 14(1)2024 Jan 01.
Article En | MEDLINE | ID: mdl-38248260

This study aims to investigate alterations in effective connectivity (EC) within the fronto-thalamic circuit and their associations with motor and cognitive declines in pontine infarction (PI). A total of 33 right PI patients (RPIs), 38 left PI patients (LPIs), and 67 healthy controls (HCs) were recruited. The spectral dynamic causal modeling (spDCM) approach was used for EC analysis within the fronto-thalamic circuit, including the thalamus, caudate, supplementary motor area (SMA), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). The EC differences between different sides of the patients and HCs were assessed, and their correlations with motor and cognitive dysfunctions were analyzed. The LPIs showed increased EC from the mPFC to the R-SMA and decreased EC from the L-thalamus to the ACC, the L-SMA to the R-SMA, the R-caudate to the R-thalamus, and the R-thalamus to the ACC. For RPIs, the EC of the R-caudate to the mPFC, the L-thalamus and L-caudate to the L-SMA, and the L-caudate to the ACC increased obviously, while a lower EC strength was shown from the L-thalamus to the mPFC, the LSMA to the R-caudate, and the R-SMA to the L-thalamus. The EC from the R-caudate to the mPFC was negatively correlated with the MoCA score for RPIs, and the EC from the R-caudate to the R-thalamus was negatively correlated with the FMA score for LPIs. The results demonstrated EC within the fronto-thalamic circuit in PI-related functional impairments and reveal its potential as a novel imaging marker.

16.
Free Radic Biol Med ; 212: 220-233, 2024 02 20.
Article En | MEDLINE | ID: mdl-38158052

Nucleus pulposus (NP) cell function-loss is one main contributor during intervertebral disc degeneration (IDD) progression. Both mitochondria and endoplasmic reticulum (ER) play vital roles in sustaining NP cell homeostasis, while the precise function of ER-mitochondria tethering and cross talk in IDD remain to be clarified. Here, we demonstrated that a notable disruption of mitochondria-associated ER membrane (MAM) was identified in degenerated discs and TBHP-induced NP cells, accompanied by mitochondrial Zn2+ overload and NP cell senescence. Importantly, experimental coupling of MAM contacts by MFN2, a critical regulator of MAM formation, could enhance NLRX1-SLC39A7 complex formation and mitochondrial Zn2+ homeostasis. Further using the sequencing data from TBHP-induced degenerative model of NP cells, combining the reported MAM proteomes, we demonstrated that SYNJ2BP loss was one critical pathological characteristic of NP cell senescence and IDD progression, which showed close relationship with MAM disruption. Overexpression of SYNJ2BP could facilitate MAM contact organization and NLRX1-SLC39A7 complex formation, thus promoted mitochondrial Zn2+ homeostasis, NP cell proliferation and intervertebral disc rejuvenation. Collectively, our present study revealed a critical role of SYNJ2BP in maintaining mitochondrial Zn2+ homeostasis in NP cells during IDD progression, partially via sustaining MAM contact and NLRX1-SLC39A7 complex formation.


Cation Transport Proteins , Intervertebral Disc Degeneration , Humans , Intervertebral Disc Degeneration/metabolism , Mitochondria/metabolism , Endoplasmic Reticulum/metabolism , Homeostasis , Zinc/metabolism , Apoptosis , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
17.
ACS Nano ; 17(24): 25468-25482, 2023 Dec 26.
Article En | MEDLINE | ID: mdl-38096153

The complexity and progressive nature of diseases require the exploitation of multifunctional materials. However, introducing a function inevitably increases the complexity of materials, which complicates preparation and decreases reproducibility. Herein, we report a supramolecular integration of multifunctional nanomaterials based on mannose-modified azocalix[4]arene (ManAC4A) and ginsenoside Rb1 (Rb1), which showed advances of simplicity and reproducibility. ManAC4A possesses reactive oxygen species (ROS) scavenging capacity and hypoxia-responsiveness, together with macrophage-targeting and induction functionality. Collectively, the Rb1@ManAC4A assembly simply prepared by two components is integrated with multifunction, including triple targeting (ELVIS targeting, macrophage-targeting, and hypoxia-targeted release) and triple therapy (ROS scavenging, macrophage polarization, and the anti-inflammatory effect of Rb1). The spontaneous assembly and recognition of ManAC4A, with its precise structure and molecular weight, facilitated the simple and straightforward preparation of Rb1@ManAC4A, leading to excellent batch consistency. Progress in simplicity and reproducibility, as directed by this research, will catalyze the clinical translation of multifunctional materials.


Arthritis, Rheumatoid , Nanostructures , Humans , Reactive Oxygen Species , Mannose , Reproducibility of Results , Hypoxia
18.
Heliyon ; 9(12): e22693, 2023 Dec.
Article En | MEDLINE | ID: mdl-38107269

Purpose: To investigate the efficiency of amniotic membrane transplantation (AMT) combined with conjunctival flap covering surgery (CFCS) for patients with corneal perforations in fungal keratitis (FK). Methods: In this non-comparative, retrospective case series, 16 participants of corneal perforation in FK were successfully treated by a combination of multilayer AMT and bipedicle conjunctival flap with partial tenon's capsule. Corneal healing, recurrence of FK, visual acuity, and relevant complications were reported as outcome measures. Results: Sixteen patients (13 male, 3 female) had a mean age of 58.8 ± 10.3 (range 29-72) years. The mean diameter of corneal perforation was 1.9 ± 0.7 (range 0.5-2.8) mm. Corneal perforations healed and all the patients preserved their eyeballs. During the 11.0 ± 4.4 (range 6-18) months of follow-up, there was no recurrence of FK in any of these cases. Visual acuity improved in 15 eyes (93.8 %) and remained unchanged in 1 patient (6.3 %) who had no light perception when first admitted. All 6 patients who accepted secondary keratoplasty showed improved best corrected visual acuity of more than 4 lines. The most frequently found fungi were Aspergillus species (6 of 16, 37.5 %) and Fusarium species (4 of 16, 25.0 %), followed by 1 Scedosporium apiospermum (1 of 16, 6.3 %). Conclusions: Combination AMT with CFCS is a safe and effective surgery for patients with corneal perforations in FK, particularly where eye banks and fresh corneas are not available. This surgery could preserve the integrity of the eyeball and avoid the recurrence of FK. Besides, it provides a greater opportunity for further optical keratoplasty.

19.
Angew Chem Int Ed Engl ; 62(51): e202315990, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-37917047

Accurately distinguishing between enantiomeric molecules is a fundamental challenge in the field of chemistry. However, there is still significant room for improvement in both the enantiomeric selectivity (KR(S) /KS(R) ) and binding strength of most reported macrocyclic chiral receptors to meet the demands of practical application scenarios. Herein, we synthesized a water-soluble conjugated tubular host-namely, corral[4]BINOL-using a chiral 1,1'-bi-2-naphthol (BINOL) derivative as the repeating unit. The conjugated chiral backbone endows corral[4]BINOL with good fluorescent emission (QY=34 % ) and circularly polarized luminescence (|glum | up to 1.4×10-3 ) in water. Notably, corral[4]BINOL exhibits high recognition affinity up to 8.6×1010  M-1 towards achiral guests in water, and manifested excellent enantioselectivity up to 18.7 towards chiral substrates, both of which represent the highest values observed among chiral macrocycles in aqueous solution. The ultrastrong binding strength, outstanding enantioselectivity, and facile accessibility, together with the superior fluorescent and chiroptical properties, endow corral[4]BINOL with great potential for a wide range of applications.

20.
J Clin Med ; 12(19)2023 Sep 27.
Article En | MEDLINE | ID: mdl-37834878

(1) Background: To evaluate the efficacy of conjunctival limbal autograft (CLAU) combined with the amnion-assisted conjunctival epithelial redirection (ACER) procedure for patients with unilateral total limbal stem cell deficiency (LSCD) caused by severe chemical burn. (2) Methods: A retrospective interventional case series of unilateral total LSCD after chemical burn who underwent CLAU combined with ACER surgery between September 2021 and July 2023 was collected. Outcome measures included epithelialization of the cornea with donor limbus-derived epithelium, best corrected visual acuity (BCVA), and complications. (3) Results: Nine males and one female were included in this study. The mean age was 40.9 ± 9.63 (range, 26 to 55) years. The average duration between injury and CLAU combined with the ACER procedure was 7.67 ± 3.97 (range, 4 to 18) months. All patients achieved corneal epithelialization and improved BCVA. Postoperative complications occurred in four cases, including delayed corneal epithelial healing in one case, delayed amniotic membrane dissolution and detachment in two cases, and recurrence of symblepharon in one case. No complications were noted in the healthy donor eyes. (4) Conclusions: CLAU combined with ACER is a safe and effective treatment for unilateral total LSCD caused by severe chemical burn. This combined surgery restores visual function for patients with corneal blindness caused by chemical burn, reducing the burden on the families and society.

...