Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-21261297

Although SARS-CoV-2 infects the upper respiratory tract, we know little about the amount, type, and kinetics of antibodies (Ab) generated at this site in response to intramuscular COVID-19 vaccination, and whether these Ab protect against subsequent "breakthrough" infections. We collected longitudinal serum and saliva samples from participants receiving two doses of mRNA COVID-19 vaccines over a 6-month period and measured the relative level of anti-Spike and anti-Receptor Binding Domain (RBD) Ab. We detected anti-Spike/RBD IgG and IgA and associated secretory component in the saliva of most participants receiving 1 dose of mRNA vaccine. Administration of a second dose of mRNA boosted the IgG but not the IgA response, with only 30% of participants remaining positive for IgA at this timepoint. At 6 months post-dose 2, these participants exhibited greatly diminished anti-Spike/RBD IgG and IgA levels concomitant with a reduction in neutralizing activity in the saliva, although the level of secretory component associated anti-Spike was less susceptible to decay. Examining two prospective cohorts of subjects that were monitored for infections post-vaccination, we found that participants who were subsequently infected with SARS-CoV-2 had lower levels of vaccine-induced serum anti-Spike/RBD IgA at 2-4 weeks post-dose 2 compared to participants who did not experience an infection, whereas IgG levels were comparable between groups. These data emphasize the importance of developing COVID-19 vaccines that elicit a durable IgA response. One-Sentence SummaryOur study delves into whether intra-muscular mRNA vaccination regimes confer a local IgA response in the oral cavity and whether the IgA response is associated with protection against breakthrough infection.

...