Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Nature ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39260416

ABSTRACT

Neurodegenerative diseases are characterised by the abnormal filamentous assembly of specific proteins in the central nervous system1. Human genetic studies established a causal role for protein assembly in neurodegeneration2. However, the underlying molecular mechanisms remain largely unknown, which is limiting progress in developing clinical tools for these diseases. Recent advances in electron cryo-microscopy (cryo-EM) have enabled the structures of the protein filaments to be determined from patient brains1. All diseases studied to date have been characterised by the self-assembly of proteins in homomeric amyloid filaments, including that of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) Types A and B3,4. Here, we used cryo-EM to determine filament structures from the brains of individuals with FTLD-TDP Type C, one of the most common forms of sporadic FTLD-TDP. Unexpectedly, the structures revealed that a second protein, annexin A11 (ANXA11), co-assembles with TDP-43 in heteromeric amyloid filaments. The ordered filament fold is formed by TDP-43 residues G282/284-N345 and ANXA11 residues L39-Y74 from their respective low-complexity domains (LCDs). Regions of TDP-43 and ANXA11 previously implicated in protein-protein interactions form an extensive hydrophobic interface at the centre of the filament fold. Immunoblots of the filaments revealed that the majority of ANXA11 exists as a ~22 kDa N-terminal fragment (NTF) lacking the annexin core domain. Immunohistochemistry of brain sections showed the co-localisation of ANXA11 and TDP-43 in inclusions, redefining the histopathology of FTLD-TDP Type C. This work establishes a central role for ANXA11 in FTLD-TDP Type C. The unprecedented formation of heteromeric amyloid filaments in human brain revises our understanding of amyloid assembly and may be of significance for the pathogenesis of neurodegenerative diseases.

2.
medRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38978643

ABSTRACT

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) is a fatal neurodegenerative disorder with only a limited number of risk loci identified. We report our comprehensive genome-wide association study as part of the International FTLD-TDP Whole-Genome Sequencing Consortium, including 985 cases and 3,153 controls, and meta-analysis with the Dementia-seq cohort, compiled from 26 institutions/brain banks in the United States, Europe and Australia. We confirm UNC13A as the strongest overall FTLD-TDP risk factor and identify TNIP1 as a novel FTLD-TDP risk factor. In subgroup analyses, we further identify for the first time genome-wide significant loci specific to each of the three main FTLD-TDP pathological subtypes (A, B and C), as well as enrichment of risk loci in distinct tissues, brain regions, and neuronal subtypes, suggesting distinct disease aetiologies in each of the subtypes. Rare variant analysis confirmed TBK1 and identified VIPR1 , RBPJL , and L3MBTL1 as novel subtype specific FTLD-TDP risk genes, further highlighting the role of innate and adaptive immunity and notch signalling pathway in FTLD-TDP, with potential diagnostic and novel therapeutic implications.

3.
bioRxiv ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38979278

ABSTRACT

Neurodegenerative diseases are characterised by the abnormal filamentous assembly of specific proteins in the central nervous system 1 . Human genetic studies established a causal role for protein assembly in neurodegeneration 2 . However, the underlying molecular mechanisms remain largely unknown, which is limiting progress in developing clinical tools for these diseases. Recent advances in electron cryo-microscopy (cryo-EM) have enabled the structures of the protein filaments to be determined from patient brains 1 . All diseases studied to date have been characterised by the self-assembly of a single intracellular protein in homomeric amyloid filaments, including that of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) Types A and B 3,4 . Here, we used cryo-EM to determine filament structures from the brains of individuals with FTLD-TDP Type C, one of the most common forms of sporadic FTLD-TDP. Unexpectedly, the structures revealed that a second protein, annexin A11 (ANXA11), co-assembles with TDP-43 in heteromeric amyloid filaments. The ordered filament fold is formed by TDP-43 residues G282/284-N345 and ANXA11 residues L39-L74 from their respective low-complexity domains (LCDs). Regions of TDP-43 and ANXA11 previously implicated in protein-protein interactions form an extensive hydrophobic interface at the centre of the filament fold. Immunoblots of the filaments revealed that the majority of ANXA11 exists as a ∼22 kDa N-terminal fragment (NTF) lacking the annexin core domain. Immunohistochemistry of brain sections confirmed the co-localisation of ANXA11 and TDP-43 in inclusions, redefining the histopathology of FTLD-TDP Type C. This work establishes a central role for ANXA11 in FTLD-TDP Type C. The unprecedented formation of heteromeric amyloid filaments in human brain revises our understanding of amyloid assembly and may be of significance for the pathogenesis of neurodegenerative diseases.

4.
Neurochem Int ; 175: 105719, 2024 May.
Article in English | MEDLINE | ID: mdl-38452814

ABSTRACT

Cortical synaptic loss has emerged as an early abnormality in Alzheimer's disease (AD) with a strong relationship to cognitive performance. However, the status of synapses in frontotemporal lobar degeneration (FTLD) has received meager experimental attention. The purpose of this study was to investigate changes in cortical synaptic proteins in FTLD with tar DNA binding protein-43 (TDP-43) proteinopathy. A second aim was to study phagocytosis of synaptic proteins by microglia as a surrogate for synaptic pruning. Western blot analysis in frozen tissue from the middle frontal gyrus revealed decreased levels of the presynaptic protein synaptophysin, but slightly increased levels of the postsynaptic density protein 95 (PSD95) in FTLD-TDP. Levels of the dendritic spine protein spinophilin displayed the largest decrease. Double immunofluorescent staining visualized aggregate or punctate synaptic protein immunoreactivity in microglia. Overall, the proportion of microglia containing synaptic proteins was larger in FTLD-TDP when compared with normal controls. The increase in PSD95 levels may represent reactive upregulation of this protein, as suggested in AD. While greater numbers of microglia containing synaptic proteins is consistent with loss of synapses in FTLD-TDP, it may also be an indication of abnormal synaptic pruning by microglia.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , TDP-43 Proteinopathies , Humans , Microglia/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , TDP-43 Proteinopathies/genetics , Frontal Lobe/metabolism
5.
Acta Neuropathol Commun ; 12(1): 31, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38389095

ABSTRACT

Pick's disease (PiD) is a subtype of the tauopathy form of frontotemporal lobar degeneration (FTLD-tau) characterized by intraneuronal 3R-tau inclusions. PiD can underly various dementia syndromes, including primary progressive aphasia (PPA), characterized by an isolated and progressive impairment of language and left-predominant atrophy, and behavioral variant frontotemporal dementia (bvFTD), characterized by progressive dysfunction in personality and bilateral frontotemporal atrophy. In this study, we investigated the neocortical and hippocampal distributions of Pick bodies in bvFTD and PPA to establish clinicopathologic concordance between PiD and the salience of the aphasic versus behavioral phenotype. Eighteen right-handed cases with PiD as the primary pathologic diagnosis were identified from the Northwestern University Alzheimer's Disease Research Center brain bank (bvFTD, N = 9; PPA, N = 9). Paraffin-embedded sections were stained immunohistochemically with AT8 to visualize Pick bodies, and unbiased stereological analysis was performed in up to six regions bilaterally [middle frontal gyrus (MFG), superior temporal gyrus (STG), inferior parietal lobule (IPL), anterior temporal lobe (ATL), dentate gyrus (DG) and CA1 of the hippocampus], and unilateral occipital cortex (OCC). In bvFTD, peak neocortical densities of Pick bodies were in the MFG, while the ATL was the most affected in PPA. Both the IPL and STG had greater leftward pathology in PPA, with the latter reaching significance (p < 0.01). In bvFTD, Pick body densities were significantly right-asymmetric in the STG (p < 0.05). Hippocampal burden was not clinicopathologically concordant, as both bvFTD and PPA cases demonstrated significant hippocampal pathology compared to neocortical densities (p < 0.0001). Inclusion-to-neuron analyses in a subset of PPA cases confirmed that neurons in the DG are disproportionately burdened with inclusions compared to neocortical areas. Overall, stereological quantitation suggests that the distribution of neocortical Pick body pathology is concordant with salient clinical features unique to PPA vs. bvFTD while raising intriguing questions about the selective vulnerability of the hippocampus to 3R-tauopathies.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Pick Disease of the Brain , Tauopathies , Humans , Pick Disease of the Brain/pathology , Frontotemporal Dementia/pathology , Alzheimer Disease/pathology , Brain/pathology , Frontotemporal Lobar Degeneration/pathology , Atrophy/pathology , Tauopathies/pathology
6.
Nat Commun ; 15(1): 264, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238311

ABSTRACT

Alzheimer's disease (AD) is characterized by progressive neurodegeneration, but the specific events that cause cell death remain poorly understood. Death Induced by Survival gene Elimination (DISE) is a cell death mechanism mediated by short (s) RNAs acting through the RNA-induced silencing complex (RISC). DISE is thus a form of RNA interference, in which G-rich 6mer seed sequences in the sRNAs (position 2-7) target hundreds of C-rich 6mer seed matches in genes essential for cell survival, resulting in the activation of cell death pathways. Here, using Argonaute precipitation and RNAseq (Ago-RP-Seq), we analyze RISC-bound sRNAs to quantify 6mer seed toxicity in several model systems. In mouse AD models and aging brain, in induced pluripotent stem cell-derived neurons from AD patients, and in cells exposed to Aß42 oligomers, RISC-bound sRNAs show a shift to more toxic 6mer seeds compared to controls. In contrast, in brains of "SuperAgers", humans over age 80 who have superior memory performance, RISC-bound sRNAs are shifted to more nontoxic 6mer seeds. Cells depleted of nontoxic sRNAs are sensitized to Aß42-induced cell death, and reintroducing nontoxic RNAs is protective. Altogether, the correlation between DISE and Aß42 toxicity suggests that increasing the levels of nontoxic miRNAs in the brain or blocking the activity of toxic RISC-bound sRNAs could ameliorate neurodegeneration.


Subject(s)
Alzheimer Disease , MicroRNAs , Mice , Animals , Humans , Aged, 80 and over , Alzheimer Disease/genetics , MicroRNAs/genetics , RNA-Induced Silencing Complex/genetics , RNA Interference , Aging/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/toxicity
7.
Nat Immunol ; 24(10): 1654-1670, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37667051

ABSTRACT

Glioblastoma (GBM) tumors consist of multiple cell populations, including self-renewing glioblastoma stem cells (GSCs) and immunosuppressive microglia. Here we identified Kunitz-type protease inhibitor TFPI2 as a critical factor connecting these cell populations and their associated GBM hallmarks of stemness and immunosuppression. TFPI2 promotes GSC self-renewal and tumor growth via activation of the c-Jun N-terminal kinase-signal transducer and activator of transcription (STAT)3 pathway. Secreted TFPI2 interacts with its functional receptor CD51 on microglia to trigger the infiltration and immunosuppressive polarization of microglia through activation of STAT6 signaling. Inhibition of the TFPI2-CD51-STAT6 signaling axis activates T cells and synergizes with anti-PD1 therapy in GBM mouse models. In human GBM, TFPI2 correlates positively with stemness, microglia abundance, immunosuppression and poor prognosis. Our study identifies a function for TFPI2 and supports therapeutic targeting of TFPI2 as an effective strategy for GBM.


Subject(s)
Glioblastoma , Animals , Mice , Humans , Glioblastoma/metabolism , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Tumor Microenvironment , Signal Transduction , Carrier Proteins/metabolism , Immunosuppressive Agents/pharmacology , Cell Line, Tumor , Neoplastic Stem Cells/metabolism
8.
Ann Neurol ; 94(6): 1036-1047, 2023 12.
Article in English | MEDLINE | ID: mdl-37592884

ABSTRACT

OBJECTIVE: Age-related dementia syndromes are often not related to a single pathophysiological process, leading to multiple neuropathologies found at autopsy. An amnestic dementia syndrome can be associated with Alzheimer's disease (AD) with comorbid transactive response DNA-binding protein 43 (TDP-43) pathology (AD/TDP). Here, we investigated neuronal integrity and pathological burden of TDP-43 and tau, along the well-charted trisynaptic hippocampal circuit (dentate gyrus [DG], CA3, and CA1) in participants with amnestic dementia due to AD/TDP, amnestic dementia due to AD alone, or non-amnestic dementia due to TDP-43 proteinopathy associated with frontotemporal lobar degeneration (FTLD-TDP). METHODS: A total of 48 extensively characterized cases (14 AD, 16 AD/TDP, 18 FTLD-TDP) were analyzed using digital HALO software (Indica Labs, Albuquerque, NM, USA) to quantify pathological burden and neuronal loss. RESULTS: In AD/TDP and FTLD-TDP, TDP-43 immunoreactivity was greatest in the DG. Tau immunoreactivity was significantly greater in DG and CA3 in AD/TDP compared with pure AD. All clinical groups showed the highest amounts of neurons in DG, followed by CA3, then CA1. The AD and AD/TDP groups showed lower neuronal counts compared with the FTLD-TDP group across all hippocampal subregions consistent with the salience of the amnestic phenotype. INTERPRETATION: We conclude that AD/TDP can be distinguished from AD and FTLD-TDP based on differential regional distributions of hippocampal tau and TDP-43. Findings suggest that tau aggregation in AD/TDP might be enhanced by TDP-43. ANN NEUROL 2023;94:1036-1047.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Alzheimer Disease/pathology , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/pathology , Hippocampus/pathology , DNA-Binding Proteins/metabolism , tau Proteins/metabolism
9.
Front Aging Neurosci ; 15: 1164581, 2023.
Article in English | MEDLINE | ID: mdl-37358954

ABSTRACT

Frontotemporal lobar degeneration (FTLD) with tau pathology (FTLD-tau) commonly causes dementia syndromes that include primary progressive aphasia (PPA) and behavioral variant frontotemporal dementia (bvFTD). Cognitive decline in PPA and bvFTD is often accompanied by debilitating neuropsychiatric symptoms. In 44 participants with PPA or bvFTD due to autopsy-confirmed FTLD-tau, we characterized neuropsychiatric symptoms at early and late disease stages and determined whether the presence of certain symptoms predicted a specific underlying FTLD-tauopathy. Participants completed annual research visits at the Northwestern University Alzheimer's Disease Research Center. All participants had an initial Global Clinical Dementia Rating (CDR) Scale score ≤ 2, and neuropsychiatric symptoms were evaluated via the Neuropsychiatric Inventory-Questionnaire (NPI-Q). We assessed the frequency of neuropsychiatric symptoms across all participants at their initial and final visits and performed logistic regression to determine whether symptoms predicted a specific FTLD-tau pathologic diagnosis. Across the FTLD-tau cohort, irritability and apathy were most frequently endorsed at initial and final visits, respectively, whereas psychosis was highly uncommon at both timepoints. Irritability at initial visit predicted greater odds of a 4-repeat compared to a 3-repeat tauopathy (OR = 3.95, 95% CI = 1.10-15.83, p < 0.05). Initial sleep disturbance predicted greater odds of progressive supranuclear palsy (PSP) compared to other FTLD-tau subtypes (OR = 10.68, 95% CI = 2.05-72.40, p < 0.01). Appetite disturbance at final evaluation predicted lower odds of PSP (OR = 0.15, 95% CI = 0.02-0.74, p < 0.05). Our findings suggest that characterization of neuropsychiatric symptoms can aid in the prediction of underlying FTLD-tauopathies. Given considerable pathologic heterogeneity underlying dementias, neuropsychiatric symptoms may be useful for differential diagnosis and treatment planning.

10.
J Comp Neurol ; 531(18): 2109-2120, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37376715

ABSTRACT

Anatomists have long expressed interest in neurons of the white matter, which is by definition supposed to be free of neurons. Hypotheses regarding their biochemical signature and physiological function are mainly derived from animal models. Here, we investigated 15 whole-brain human postmortem specimens, including cognitively normal cases and those with pathologic Alzheimer's disease (AD). Quantitative and qualitative methods were used to investigate differences in neuronal size and density, and the relationship between neuronal processes and vasculature. Double staining was used to evaluate colocalization of neurochemicals. Two topographically distinct populations of neurons emerged: one appearing to arise from developmental subplate neurons and the other embedded within deep, subcortical white matter. Both populations appeared to be neurochemically heterogeneous, showing positive reactivity to acetylcholinesterase (AChE) [but not choline acetyltransferase (ChAT)], neuronal nuclei (NeuN), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), microtubule-associated protein 2 (MAP-2), somatostatin (SOM), nonphosphorylated neurofilament protein (SMI-32), and calcium-binding proteins calbindin-D28K (CB), calretinin (CRT), and parvalbumin (PV). PV was more richly expressed in superficial as opposed to deep white matter neurons (WMNs); subplate neurons were also significantly larger than their deeper counterparts. NADPH-d, a surrogate for nitric oxide synthase, allowed for the striking morphological visualization of subcortical WMNs. NADPH-d-positive subcortical neurons tended to embrace the outer walls of microvessels, suggesting a functional role in vasodilation. The presence of AChE positivity in these neurons, but not ChAT, suggests that they are cholinoceptive but noncholinergic. WMNs were also significantly smaller in AD compared to control cases. These observations provide a landscape for future systematic investigations.


Subject(s)
Alzheimer Disease , White Matter , Animals , Humans , White Matter/metabolism , Acetylcholinesterase/metabolism , NADP/metabolism , Calbindins/metabolism , Neurons/metabolism , Calbindin 2/metabolism , NADPH Dehydrogenase/metabolism , Alzheimer Disease/pathology , S100 Calcium Binding Protein G/metabolism
11.
Ann Neurol ; 94(1): 1-12, 2023 07.
Article in English | MEDLINE | ID: mdl-37183762

ABSTRACT

The anatomical distribution of most neurodegenerative diseases shows considerable interindividual variations. In contrast, frontotemporal lobar degeneration with transactive response DNA-binding protein type C (TDP-C) shows a consistent predilection for the anterior temporal lobe (ATL). The relatively selective atrophy of ATL in TDP-C patients has highlighted the importance of this region for complex cognitive and behavioral functions. This review includes observations on 28 TDP-C patients, 18 with semantic primary progressive aphasia and 10 with other syndromes. Longitudinal imaging allowed the delineation of progression trajectories. At post-mortem examination, the pathognomonic feature of TDP-C consisted of long, thick neurites found predominantly in superficial cortical layers. These neurites may represent dystrophic apical dendrites of layer III and V pyramidal neurons that are known to play pivotal roles in complex cortical computations. Other types of frontotemporal lobar degeneration TDP, such as TDP-A and TDP-B, are not associated with long dystrophic neurites in the cerebral cortex, and do not show similar predilection patterns for ATL. Research is beginning to identify molecular, structural, and immunological differences between pathological TDP-43 in TDP-C versus TDP-A and B. Parallel investigations based on proteomics, somatic mutations, and genome-wide association studies are detecting molecular features that could conceivably mediate the selective vulnerability of ATL to TDP-C. Future work will focus on characterizing the distinctive features of the abnormal TDP-C neurites, the mechanisms of neurotoxicity, initial cellular targets within the ATL, trajectory of spread, and the nature of ATL-specific markers that modulate vulnerability to TDP-C. ANN NEUROL 2023;94:1-12.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Genome-Wide Association Study , Brain/pathology , Frontotemporal Dementia/metabolism , Temporal Lobe/metabolism , Frontotemporal Lobar Degeneration/pathology , Atrophy/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
12.
Alzheimers Dement ; 19(9): 3902-3915, 2023 09.
Article in English | MEDLINE | ID: mdl-37037656

ABSTRACT

INTRODUCTION: European local ancestry (ELA) surrounding apolipoprotein E (APOE) ε4 confers higher risk for Alzheimer's disease (AD) compared to African local ancestry (ALA). We demonstrated significantly higher APOE ε4  expression in ELA versus ALA in AD brains from APOE ε4/ε4 carriers. Chromatin accessibility differences could contribute to these expression changes. METHODS: We performed single nuclei assays for transposase accessible chromatin sequencing from the frontal cortex of six ALA and six ELA AD brains, homozygous for local ancestry and APOE ε4. RESULTS: Our results showed an increased chromatin accessibility at the APOE ε4  promoter area in ELA versus ALA astrocytes. This increased accessibility in ELA astrocytes extended genome wide. Genes with increased accessibility in ELA in astrocytes were enriched for synapsis, cholesterol processing, and astrocyte reactivity. DISCUSSION: Our results suggest that increased chromatin accessibility of APOE ε4  in ELA astrocytes contributes to the observed elevated APOE ε4  expression, corresponding to the increased AD risk in ELA versus ALA APOE ε4/ε4 carriers.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Humans , Apolipoprotein E4/genetics , Alzheimer Disease/genetics , Alzheimer Disease/complications , Chromatin , Heterozygote , Gene Expression
13.
Neurology ; 100(18): e1922-e1929, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36889925

ABSTRACT

BACKGROUND AND OBJECTIVES: Primary progressive aphasia (PPA) is a neurodegenerative syndrome of progressive language decline. PPA has 3 main subtypes: logopenic, semantic, and agrammatic. Observational studies suggested an association between language-related neurodevelopmental phenotypes and an increased risk of PPA. We sought to assess such relationships through Mendelian randomization (MR) approach, which can suggest potentially causal associations. METHODS: Genome-wide significant single-nucleotide polymorphisms (SNPs) associated with dyslexia (42 SNPs), developmental speech disorders (29 SNPs), and left-handedness (41 SNPs) were used as genetic proxies for the exposures. Eighteen of 41 SNPs of left-handedness were associated with structural asymmetry of the cerebral cortex. Genome-wide association study summary statistics were obtained from publicly available databases for semantic (308 cases/616 controls) and agrammatic PPA (269 cases/538 controls). The logopenic PPA (324 cases/3,444 controls) was approximated by proxy through the rubric of clinically diagnosed Alzheimer disease with salient language impairment. Inverse-weighted variance MR was performed as the main analysis for testing the relationship between the exposures and outcomes. Sensitivity analyses were completed to test the robustness of the results. RESULTS: Dyslexia, developmental speech disorders, and left-handedness were not associated with any PPA subtype (p > 0.05). The genetic proxy of cortical asymmetry in left-handedness was significantly associated with agrammatic PPA (ß = 4.3, p = 0.007), but not with other PPA subtypes. This association was driven by microtubule-related genes, primarily by a variant that is in complete linkage disequilibrium with MAPT gene. Sensitivity analyses were overall consistent with the primary analyses. DISCUSSION: Our results do not support a causal association between dyslexia, developmental speech disorders, and handedness with any of the PPA subtypes. Our data suggest a complex association between cortical asymmetry genes and agrammatic PPA. Whether the additional association with left-handedness is necessary remains to be determined but is unlikely, given the absence of association between left-handedness and PPA. Genetic proxy of brain asymmetry (regardless of handedness) was not tested as an exposure due to lack of suitable genetic proxy. Furthermore, the genes related to cortical asymmetry associated with agrammatic PPA are implicated in microtubule-related proteins (TUBA1B, TUBB, and MAPT), which is keeping with the association of tau-related neurodegeneration in this PPA variant.


Subject(s)
Aphasia, Primary Progressive , Dyslexia , Humans , Aphasia, Primary Progressive/diagnosis , Genome-Wide Association Study , Brain , Phenotype
14.
Front Mol Neurosci ; 16: 1059730, 2023.
Article in English | MEDLINE | ID: mdl-36741924

ABSTRACT

Dendritic spines are highly dynamic and changes in their density, size, and shape underlie structural synaptic plasticity in cognition and memory. Fine membranous protrusions of spines, termed dendritic spinules, can contact neighboring neurons or glial cells and are positively regulated by neuronal activity. Spinules are thinner than filopodia, variable in length, and often emerge from large mushroom spines. Due to their nanoscale, spinules have frequently been overlooked in diffraction-limited microscopy datasets. Until recently, our knowledge of spinules has been interpreted largely from single snapshots in time captured by electron microscopy. We summarize herein the current knowledge about the molecular mechanisms of spinule formation. Additionally, we discuss possible spinule functions in structural synaptic plasticity in the context of development, adulthood, aging, and psychiatric disorders. The literature collectively implicates spinules as a mode of structural synaptic plasticity and suggests the existence of morphologically and functionally distinct spinule subsets. A recent time-lapse, enhanced resolution imaging study demonstrated that the majority of spinules are small, short-lived, and dynamic, potentially exploring their environment or mediating retrograde signaling and membrane remodeling via trans-endocytosis. A subset of activity-enhanced, elongated, long-lived spinules is associated with complex PSDs, and preferentially contacts adjacent axonal boutons not presynaptic to the spine head. Hence, long-lived spinules can form secondary synapses with the potential to alter synaptic connectivity. Published studies further suggest that decreased spinules are associated with impaired synaptic plasticity and intellectual disability, while increased spinules are linked to hyperexcitability and neurodegenerative diseases. In summary, the literature indicates that spinules mediate structural synaptic plasticity and perturbations in spinules can contribute to synaptic dysfunction and psychiatric disease. Additional studies would be beneficial to further delineate the molecular mechanisms of spinule formation and determine the exact role of spinules in development, adulthood, aging, and psychiatric disorders.

15.
Acta Neuropathol Commun ; 11(1): 1, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36597124

ABSTRACT

The dentate gyrus (DG), a key hippocampal subregion in memory processing, generally resists phosphorylated tau accumulation in the amnestic dementia of the Alzheimer's type due to Alzheimer's disease (DAT-AD), but less is known about the susceptibility of the DG to other tauopathies. Here, we report stereologic densities of total DG neurons and tau inclusions in thirty-two brains of human participants with autopsy-confirmed tauopathies with distinct isoform profiles-3R Pick's disease (PiD, N = 8), 4R corticobasal degeneration (CBD, N = 8), 4R progressive supranuclear palsy (PSP, N = 8), and 3/4R AD (N = 8). All participants were diagnosed during life with primary progressive aphasia (PPA), an aphasic clinical dementia syndrome characterized by progressive deterioration of language abilities with spared non-language cognitive abilities in early stages, except for five patients with DAT-AD as a comparison group. 51% of total participants were female. All specimens were stained immunohistochemically with AT8 to visualize tau pathology, and PPA cases were stained for Nissl substance to visualize neurons. Unbiased stereological analysis was performed in granule and hilar DG cells, and inclusion-to-neuron ratios were calculated. In the PPA group, PiD had highest mean total (granule + hilar) densities of DG tau pathology (p < 0.001), followed by CBD, AD, then PSP. PPA-AD cases showed more inclusions in hilar cells compared to granule cells, while the opposite was true in PiD and CBD. Inclusion-to-neuron ratios revealed, on average, 33% of all DG neurons in PiD cases contained a tau inclusion, compared to ~ 7% in CBD, 2% in AD, and 0.4% in PSP. There was no significant difference between DAT-AD and PPA-AD pathologic tau burden, suggesting that differences in DG burden are not specific to clinical phenotype. We conclude that the DG is differentially vulnerable to pathologic tau accumulation, raising intriguing questions about the structural integrity and functional significance of hippocampal circuits in neurodegenerative dementias.


Subject(s)
Alzheimer Disease , Corticobasal Degeneration , Supranuclear Palsy, Progressive , Tauopathies , Humans , Female , Male , tau Proteins/metabolism , Tauopathies/pathology , Alzheimer Disease/pathology , Supranuclear Palsy, Progressive/pathology , Dentate Gyrus/metabolism
16.
Neurobiol Aging ; 123: 98-110, 2023 03.
Article in English | MEDLINE | ID: mdl-36657371

ABSTRACT

Animal models of Alzheimer's Disease (AD) are attractive tools for preclinical, prodromal drug testing. The TgF344-AD (Tg) rat exhibits cognitive deficits and 5 major hallmarks of AD. Here we show that spatial water maze (WMZ) memory deficits and proteomic differences in dorsal CA1 were present in young Tg rats. Aged learning-unimpaired (AU) and aged learning-impaired (AI) proteome associated changes were identified and differed by sex. Levels of phosphorylated tau, reactive astrocytes and microglia were significantly increased in aged Tg rats and correlated with the WMZ learning index (LI); in contrast, no significant correlation was present between amyloid plaques or insoluble Aß levels and LI. Neuroinflammatory markers were also significantly correlated with LI and increased in female Tg rats. The anti-inflammatory marker, triggering receptor expressed on myeloid cells-2 (TREM2), was significantly reduced in aged impaired Tg rats and correlated with LI. Identifying and understanding mechanisms that allow for healthy aging by overcoming genetic drivers for AD, and/or promoting drivers for successful aging, are important for developing successful therapeutics against AD.


Subject(s)
Alzheimer Disease , Cognition Disorders , Cognitive Dysfunction , Rats , Animals , Female , Mice , Alzheimer Disease/metabolism , Rats, Transgenic , Proteomics , Cognition Disorders/complications , Cognitive Dysfunction/genetics , Cognitive Dysfunction/complications , Disease Models, Animal , Maze Learning , Mice, Transgenic , Amyloid beta-Peptides , Membrane Glycoproteins , Receptors, Immunologic
17.
J Neurosci ; 42(45): 8587-8594, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36180225

ABSTRACT

Average aging is associated with a gradual decline of memory capacity. SuperAgers are humans ≥80 years of age who show exceptional episodic memory at least as good as individuals 20-30 years their junior. This study investigated whether neuronal integrity in the entorhinal cortex (ERC), an area critical for memory and selectively vulnerable to neurofibrillary degeneration, differentiated SuperAgers from cognitively healthy younger individuals, cognitively average peers ("Normal Elderly"), and individuals with amnestic mild cognitive impairment. Postmortem sections of the ERC were stained with cresyl violet to visualize neurons and immunostained with mouse monoclonal antibody PHF-1 to visualize neurofibrillary tangles. The cross-sectional area (i.e., size) of layer II and layer III/V ERC neurons were quantified. Two-thirds of total participants were female. Unbiased stereology was used to quantitate tangles in a subgroup of SuperAgers and Normal Elderly. Linear mixed-effect models were used to determine differences across groups. Quantitative measurements found that the soma size of layer II ERC neurons in postmortem brain specimens were significantly larger in SuperAgers compared with all groups (p < 0.05)-including younger individuals 20-30 years their junior (p < 0.005). SuperAgers had significantly fewer stereologically quantified Alzheimer's disease-related neurofibrillary tangles in layer II ERC than Normal Elderly (p < 0.05). This difference in tangle burden in layer II between SuperAgers and Normal Elderly suggests that tangle-bearing neurons may be prone to shrinkage during aging. The finding that SuperAgers show ERC layer II neurons that are substantially larger even compared with individuals 20-30 years younger is remarkable, suggesting that layer II ERC integrity is a biological substrate of exceptional memory in old age.SIGNIFICANCE STATEMENT Average aging is associated with a gradual decline of memory. Previous research shows that an area critical for memory, the entorhinal cortex (ERC), is susceptible to the early formation of Alzheimer's disease neuropathology, even during average (or typical) trajectories of aging. The Northwestern University SuperAging Research Program studies unique individuals known as SuperAgers, individuals ≥80 years old who show exceptional memory that is at least as good as individuals 20-30 years their junior. In this study, we show that SuperAgers harbor larger, healthier neurons in the ERC compared with their cognitively average same-aged peers, those with amnestic mild cognitive impairment, and - remarkably - even compared with individuals 20-30 years younger. We conclude that larger ERC neurons are a biological signature of the SuperAging trajectory.


Subject(s)
Alzheimer Disease , Cognitive Aging , Aged , Animals , Mice , Humans , Female , Aged, 80 and over , Male , Entorhinal Cortex/pathology , Alzheimer Disease/pathology , Neurofibrillary Tangles/pathology , Neurons/pathology , Aging
18.
J Neuropathol Exp Neurol ; 81(11): 910-919, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36111818

ABSTRACT

Basal forebrain cholinergic neurons (BFCN) display accumulation of neurofibrillary tangles and degeneration in Alzheimer disease and are targets of therapeutic intervention. This study determined vulnerability of BFCN to accumulation of TDP-43 in primary progressive aphasia with TDP-43 proteinopathy (PPA-TDP). Brains from 16 PPA participants with pathologically confirmed TDP-43 proteinopathy, with available paraffin-embedded sections (Group 1), or systematically sampled frozen sections (Group 2), were studied. Immunohistochemistry was performed with an antibody against phosphorylated TDP-43. BFCN were identified by their magnocellular appearance in Nissl preparations. Presence of TDP-43 inclusions and preinclusions in BFCN was determined and quantitative analysis was performed in Group 2. In Group 1, BFCN were completely free of inclusions except for occasional dystrophic neurites. Sparse TDP-43 preinclusions with smooth or granular staining in BFCN were detected. In Group 2, extremely rare TDP-43 intranuclear inclusions were detected in 0.1% of BFCN per section, along with occasional dystrophic neurites. Although sparse, significantly more preinclusions (1.4% of BFCN) were present when compared with inclusions. No hemispheric differences were noted. Small neurons near BFCN contained more preinclusions compared with BFCN. Thus, BFCN in PPA-TDP are resistant to TDP-43 proteinopathy and degeneration, suggesting that cholinergic therapy is unlikely to be effective in this disorder.


Subject(s)
Aphasia, Primary Progressive , Basal Forebrain , TDP-43 Proteinopathies , Humans , Basal Forebrain/metabolism , Cholinergic Neurons/metabolism , DNA-Binding Proteins/metabolism , Cholinergic Agents
19.
Alzheimers Dement (N Y) ; 8(1): e12321, 2022.
Article in English | MEDLINE | ID: mdl-35929001

ABSTRACT

Introduction: SuperAgers are individuals over age 80 with superior episodic memory, at a level consistent with individuals 20 to 30 years their junior and who seem to show resistance to age-related neurofibrillary degeneration. Here we examine whether low genetic risk for Alzheimer's disease (AD) contributes to SuperAgers' unusually high episodic memory performance in advanced age. Methods: The AD polygenic hazard score (PHS) was calculated for each SuperAger and cognitively normal participant and compared between groups. Results: A total of 37 SuperAgers (73% female, mean [standard deviation] 82.7 [2.8] years old) and 35 controls (54% female, 83.7 [4.3] years old) were included. There was no significant difference in the AD PHS between SuperAgers and cognitively normal controls. Discussion: Unusually successful cognitive aging cannot be simply explained by low polygenic risk for AD as assessed by common genetic variants. However, rare variants and common protective genetic factors may contribute to resistance or resilience. Highlights: SuperAging cannot be simply explained by low polygenic risk for Alzheimer's disease.Rare variants and common protective genetic factors may contribute to SuperAging.A protective factors polygenic score may uncover mechanisms for SuperAging.

20.
Acta Neuropathol Commun ; 10(1): 111, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945628

ABSTRACT

Quantification of in vivo amyloid and tau PET imaging relationships with postmortem measurements are critical for validating the sensitivity and specificity imaging biomarkers across clinical phenotypes with Alzheimer disease neuropathologic change (ADNC). This study examined the quantitative relationship between regional binding of in vivo 18F-florbetapir amyloid PET and 18F-flortaucipir tau PET with postmortem stereological counts of amyloid plaques and neurofibrillary tangles (NFT) in a case of primary progressive aphasia (PPA) with ADNC, where neurodegeneration asymmetrically targets the left hemisphere. Beginning 2 years prior to death, a 63-year-old right-handed man presenting with agrammatic variant PPA underwent a florbetapir and flortaucpir PET scan, and neuropsychological assessments and magnetic resonance imaging sessions every 6 months. Florbetapir and flortaucpir PET standard uptake value ratios (SUVRs) were quantified from 8 left and right hemisphere brain regions with stereological quantification of amyloid plaques and NFTs from corresponding postmortem sections. Pearson's correlations and measures of asymmetry were used to examine relationships between imaging and autopsy measurements. The three visits prior to death revealed decline of language measures, with marked progression of atrophy. Florbetapir PET presented with an atypical focal pattern of uptake and showed a significant positive correlation with postmortem amyloid plaque density across the 8 regions (r = 0.92; p = 0.001). Flortaucipir PET had a left-lateralized distribution and showed a significant positive correlation with NFT density (r = 0.78; p = 0.023). Flortaucipir PET and NFT density indicated a medial temporal lobe sparing presentation of ADNC, demonstrating that AD does not always target the medial temporal lobe. This study adds additional evidence, in a non-amnestic phenotype of ADNC, that there is a strong correlation between AD PET biomarkers, florbetapir and flortaucipir, with quantitative neuropathology. The atypical and focal presentation of plaque density and florbetapir PET uptake suggests not all amyloid pathology presents as diffuse across neocortex.


Subject(s)
Alzheimer Disease , Aphasia, Primary Progressive , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Amyloid/metabolism , Aphasia, Primary Progressive/diagnostic imaging , Aphasia, Primary Progressive/pathology , Autopsy , Carbolines , Humans , Magnetic Resonance Imaging , Neurofibrillary Tangles/pathology , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/pathology , Positron-Emission Tomography/methods , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL