Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Basic Med Sci ; 27(1): 57-65, 2024.
Article in English | MEDLINE | ID: mdl-38164487

ABSTRACT

Objectives: Experimental studies reported that some plants in the genus of Moraea (Iridaceae family) show anticancer potential. This study aimed to evaluate the effects of Moraea sisyrinchium on U87 glioblastoma multiforme and HepG2 liver cancer cells. Materials and Methods: The cells were incubated for 24 hr with hydroalcoholic extract of the stem, flower, and bulb of M. sisyrinchium. Then, the cell proliferation (MTT) assay, cell cycle analysis (propidium iodide staining), cell migration test (scratch), Western blotting (Bax and Bcl-2 expression), and gelatin zymography (for matrix metalloproteinases, MMPs) were performed. Oxidative stress was evaluated by determining the levels of reactive oxygen species and lipid peroxidation. Angiogenesis was evaluated on chick embryo chorioallantoic membrane. Results: The extracts of the flower, stem, and bulb significantly decreased the proliferation of HepG2 and U87 cells. This effect was more for U87 than HepG2 and for the bulb and stem than the flower. In U87 cells, the bulb extract increased oxidative stress, cell cycle arrest, and the Bax/Bcl-2 ratio. Also, this extract suppressed the migration ability of HepG2 and U87 cells, which was associated with the inhibition of MMP2 activity. In addition, it significantly reduced the number and diameter of vessels in the chorioallantoic membrane. Liquid chromatography-mass spectrometry revealed the presence of xanthones (bellidifolin and mangiferin), flavonoids (quercetin and luteolin), isoflavones (iridin and tectorigenin), and phytosterols (e.g., stigmasterol) in the bulb. Conclusion: M. sisyrinchium bulb decreased the proliferation and survival of cancer cells by inducing oxidative stress. It also reduced the migration ability of the cells and inhibited angiogenesis.

2.
J Clin Lab Anal ; 37(4): e24850, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36808649

ABSTRACT

BACKGROUND: Burn injuries result in disruption of the skin barrier against opportunistic infections. Pseudomonas aeruginosa is one of the main infectious agents colonizing burn wounds and making severe infections. Biofilm production and other virulence factors along with antibiotic resistance limit appropriate treatment options and time. MATERIALS AND METHODS: Wound samples were collected from hospitalized burn patients. P. aeruginosa isolates and related virulence factors identified by the standard biochemical and molecular methods. Antibiotic resistance patterns were determined by the disc diffusion method and ß-lactamase genes were detected by polymerase chain reaction (PCR) assay. To determine the genetic relatedness amongst the isolates, enterobacterial repetitive intergenic consensus (ERIC)-PCR was also performed. RESULTS: Forty P. aeruginosa isolates were identified. All of these isolates were biofilm producers. Carbapenem resistance was detected in 40% of the isolates, and blaTEM (37/5%), blaVIM (30%), and blaCTX-M (20%) were the most common ß-lactamase genes. The highest resistance was detected to cefotaxime, ceftazidime, meropenem, imipenem and piperacillin, and 16 (40%) isolates were resistant to these antibiotics. The minimum inhibitory concentrations (MIC) of colistin was lower than 2 µg/mL and no resistance was observed. Isolates were categorized to 17 MDR, 13 mono-drug resistance, and 10 susceptible isolates. High genetic diversity was also observed among the isolates (28 ERIC types) and most carbapenem-resistant isolates were classified into four main types. CONCLUSION: Antibiotic resistance, particularly carbapenem resistance was considerable among the P. aeruginosa isolates colonizing burn wounds. Combining carbapenem resistance with biofilm production and virulence factors would result in severe and difficult-to-treat infections.


Subject(s)
Burns , Pseudomonas Infections , Wound Infection , Humans , Pseudomonas aeruginosa/genetics , Virulence , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , beta-Lactamases/genetics , Burns/complications , Microbial Sensitivity Tests , Drug Resistance, Microbial , Virulence Factors/genetics , Biofilms
3.
Curr Drug Discov Technol ; 19(2): e130122200196, 2022.
Article in English | MEDLINE | ID: mdl-35049434

ABSTRACT

BACKGROUND: Garcinia mangostana, commonly also called mangosteen, is an evergreen tropical tree, and its pericarps have been used in traditional herbal medicine for different diseases. The anticancer efficacy of the ethanolic extract from the pericarps of Garcinia mangostana was investigated in human prostate cancer cells (PC3), melanoma cells (B16F10), breast cancer cells (MCF7), and glioblastoma (U87) cell lines. METHODS: 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay was used to measure cell viability. Propidium iodide (PI) staining and analysis on a flow cytometer were used to identify apoptosis. Action on cell migration was evaluated by scratch assay and gelatin zymography. Furthermore, the level of intracellular reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) activity was measured. Moreover, we investigated the synergistic efficacy with several combinations of Garcinia mangostana extract (GME) with doxorubicin. RESULTS: GME reduced cell viability in malignant cell dose time-dependently. GME-induced sub- G1 peak in flow cytometry histogram of treated cells control representing apoptotic cell death is involved in GME toxicity. Furthermore, GME exhibited inhibitory effects on the migration ability of U87 cells, which was accompanied by inhibition in the activity and expression of MMP2 (matrix metalloproteinase-2). Besides, GSH level and SOD activity were significantly reduced while there was an increase in ROS and MDA concentration following 24 hr of GME treatment. Moreover, a combination of GME (1.5-25 µg/mL) with Dox (6 µg/mL) displayed synergistic efficacy and cell growth inhibition. CONCLUSION: In conclusion, GME could cause cell death in PC3, MCF7, U87, and B16F10 cell lines, in which apoptosis plays an imperative role. Plant extract decreased the migration ability of the cells by inhibiting the activity and expression of Matrix metalloproteinases (MMPs). G. mangostana could be a promising therapeutic strategy to treat cancer in the future.


Subject(s)
Antineoplastic Agents , Garcinia mangostana , Neoplasms , Antineoplastic Agents/pharmacology , Cell Line , Humans , Male , Matrix Metalloproteinase 2 , Neoplasms/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Reactive Oxygen Species , Superoxide Dismutase
SELECTION OF CITATIONS
SEARCH DETAIL
...