Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
bioRxiv ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38979153

ABSTRACT

Microglia, the parenchymal macrophage of the central nervous system serve crucial remodeling functions throughout development. Microglia are transcriptionally heterogenous, suggesting that distinct microglial states confer discrete roles. Currently, little is known about how dynamic these states are, the cues that promote them, or how they impact microglial function. In the developing retina, we previously found a significant proportion of microglia express CD11c (Integrin αX, complement receptor 4, Itgax) which has also been reported in other developmental and disease contexts. Here, we sought to understand the regulation and function of CD11c+ microglia. We found that CD11c+ microglia track with prominent waves of neuronal apoptosis in postnatal retina. Using genetic fate mapping, we provide evidence that microglia transition out of the CD11c state to return to homeostasis. We show that CD11c+ microglia have elevated lysosomal content and contribute to the clearance of apoptotic neurons, and found that acquisition of CD11c expression is, in part, dependent upon the TAM receptor Axl. Using selective ablation, we found CD11c+ microglia are not uniquely critical for phagocytic clearance of apoptotic cells. Together, our data suggest CD11c+ microglia are a transient state induced by developmental apoptosis rather than a specialized subset mediating phagocytic elimination.

2.
Neuromolecular Med ; 25(1): 27-39, 2023 03.
Article in English | MEDLINE | ID: mdl-35749057

ABSTRACT

Aging is the major risk factor for Alzheimer's disease (AD). Mitochondrial dysfunction and neuronal network hyperexcitability are two age-related alterations implicated in AD pathogenesis. We found that levels of the mitochondrial protein deacetylase sirtuin-3 (SIRT3) are significantly reduced, and consequently mitochondria protein acetylation is increased in brain cells during aging. SIRT3-deficient mice exhibit robust mitochondrial protein hyperacetylation and reduced mitochondrial mass during aging. Moreover, SIRT3-deficient mice exhibit epileptiform and burst-firing electroencephalogram activity indicating neuronal network hyperexcitability. Both aging and SIRT3 deficiency result in increased sensitivity to kainic acid-induced seizures. Exposure of cultured cerebral cortical neurons to amyloid ß-peptide (Aß) results in a reduction in SIRT3 levels and SIRT3-deficient neurons exhibit heightened sensitivity to Aß toxicity. Finally, SIRT3 haploinsufficiency in middle-aged App/Ps1 double mutant transgenic mice results in a significant increase in Aß load compared with App/Ps1 double mutant mice with normal SIRT3 levels. Collectively, our findings suggest that SIRT3 plays an important role in protecting neurons against Aß pathology and excitotoxicity.


Subject(s)
Alzheimer Disease , Sirtuin 3 , Mice , Animals , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/metabolism , Neurons/metabolism , Mice, Transgenic , Mitochondria/metabolism , Mitochondrial Proteins , Disease Models, Animal
3.
Elife ; 112022 04 28.
Article in English | MEDLINE | ID: mdl-35481836

ABSTRACT

Microglia serve critical remodeling roles that shape the developing nervous system, responding to the changing neural environment with phagocytosis or soluble factor secretion. Recent single-cell sequencing (scRNAseq) studies have revealed the context-dependent diversity in microglial properties and gene expression, but the cues promoting this diversity are not well defined. Here, we ask how interactions with apoptotic neurons shape microglial state, including lysosomal and lipid metabolism gene expression and dependence on Colony-stimulating factor 1 receptor (CSF1R) for survival. Using early postnatal mouse retina, a CNS region undergoing significant developmental remodeling, we performed scRNAseq on microglia from mice that are wild-type, lack neuronal apoptosis (Bax KO), or are treated with CSF1R inhibitor (PLX3397). We find that interactions with apoptotic neurons drive multiple microglial remodeling states, subsets of which are resistant to CSF1R inhibition. We find that TAM receptor Mer and complement receptor 3 are required for clearance of apoptotic neurons, but that Mer does not drive expression of remodeling genes. We show TAM receptor Axl is negligible for phagocytosis or remodeling gene expression but is consequential for microglial survival in the absence of CSF1R signaling. Thus, interactions with apoptotic neurons shift microglia toward distinct remodeling states and through Axl, alter microglial dependence on survival pathway, CSF1R.


Subject(s)
Microglia , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Animals , Apoptosis , Mice , Mice, Inbred C57BL , Microglia/metabolism , Phagocytosis , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Signal Transduction
4.
Nat Rev Neurosci ; 21(8): 445, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32606453

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
J Neurosci ; 40(3): 694-709, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31818974

ABSTRACT

Impaired mitochondrial function and aberrant neuronal network activity are believed to be early events in the pathogenesis of Alzheimer's disease (AD), but how mitochondrial alterations contribute to aberrant activity in neuronal circuits is unknown. In this study, we examined the function of mitochondrial protein deacetylase sirtuin 3 (SIRT3) in the pathogenesis of AD. Compared with AppPs1 mice, Sirt3-haploinsufficient AppPs1 mice (Sirt3+/-AppPs1) exhibit early epileptiform EEG activity and seizure. Both male and female Sirt3+/-AppPs1 mice were observed to die prematurely before 5 months of age. When comparing male mice among different genotypes, Sirt3 haploinsufficiency renders GABAergic interneurons in the cerebral cortex vulnerable to degeneration and associated neuronal network hyperexcitability. Feeding Sirt3+/-AppPs1 AD mice with a ketone ester-rich diet increases SIRT3 expression and prevents seizure-related death and the degeneration of GABAergic neurons, indicating that the aggravated GABAergic neuron loss and neuronal network hyperexcitability in Sirt3+/-AppPs1 mice are caused by SIRT3 reduction and can be rescued by increase of SIRT3 expression. Consistent with a protective role in AD, SIRT3 levels are reduced in association with cerebral cortical Aß pathology in AD patients. In summary, SIRT3 preserves GABAergic interneurons and protects cerebral circuits against hyperexcitability, and this neuroprotective mechanism can be bolstered by dietary ketone esters.SIGNIFICANCE STATEMENT GABAergic neurons provide the main inhibitory control of neuronal activity in the brain. By preserving mitochondrial function, SIRT3 protects parvalbumin and calretinin interneurons against Aß-associated dysfunction and degeneration in AppPs1 Alzheimer's disease mice, thus restraining neuronal network hyperactivity. The neuronal network dysfunction that occurs in Alzheimer's disease can be partially reversed by physiological, dietary, and pharmacological interventions to increase SIRT3 expression and enhance the functionality of GABAergic interneurons.


Subject(s)
Alzheimer Disease/physiopathology , Interneurons , Nerve Net/physiopathology , Sirtuin 3/genetics , gamma-Aminobutyric Acid/metabolism , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Cerebral Cortex/physiopathology , Diet, Ketogenic , Electroencephalography , Epilepsy/genetics , Epilepsy/physiopathology , Female , Humans , Ketones/pharmacology , Male , Mice , Mice, Transgenic , Nerve Degeneration/physiopathology , Seizures/genetics , Seizures/physiopathology
6.
Nat Rev Neurosci ; 19(2): 63-80, 2018 02.
Article in English | MEDLINE | ID: mdl-29321682

ABSTRACT

During evolution, individuals whose brains and bodies functioned well in a fasted state were successful in acquiring food, enabling their survival and reproduction. With fasting and extended exercise, liver glycogen stores are depleted and ketones are produced from adipose-cell-derived fatty acids. This metabolic switch in cellular fuel source is accompanied by cellular and molecular adaptations of neural networks in the brain that enhance their functionality and bolster their resistance to stress, injury and disease. Here, we consider how intermittent metabolic switching, repeating cycles of a metabolic challenge that induces ketosis (fasting and/or exercise) followed by a recovery period (eating, resting and sleeping), may optimize brain function and resilience throughout the lifespan, with a focus on the neuronal circuits involved in cognition and mood. Such metabolic switching impacts multiple signalling pathways that promote neuroplasticity and resistance of the brain to injury and disease.


Subject(s)
Brain/physiology , Fasting/metabolism , Neuronal Plasticity/physiology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL