Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
FASEB J ; 34(1): 1602-1619, 2020 01.
Article in English | MEDLINE | ID: mdl-31914620

ABSTRACT

Endurance exercise begun with reduced muscle glycogen stores seems to potentiate skeletal muscle protein abundance and gene expression. However, it is unknown whether this greater signaling responses is due to performing two exercise sessions in close proximity-as a first exercise session is necessary to reduce the muscle glycogen stores. In the present study, we manipulated the recovery duration between a first muscle glycogen-depleting exercise and a second exercise session, such that the second exercise session started with reduced muscle glycogen in both approaches but was performed either 2 or 15 hours after the first exercise session (so-called "twice-a-day" and "once-daily" approaches, respectively). We found that exercise twice-a-day increased the nuclear abundance of transcription factor EB (TFEB) and nuclear factor of activated T cells (NFAT) and potentiated the transcription of peroxisome proliferator-activated receptor-É£ coactivator 1-alpha (PGC-1α), peroxisome proliferator-activated receptor-alpha (PPARα), and peroxisome proliferator-activated receptor beta/delta (PPARß/δ) genes, in comparison with the once-daily exercise. These results suggest that part of the elevated molecular signaling reported with previous "train-low" approaches might be attributed to performing two exercise sessions in close proximity. The twice-a-day approach might be an effective strategy to induce adaptations related to mitochondrial biogenesis and fat oxidation.


Subject(s)
Biomarkers/metabolism , Exercise/physiology , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/physiology , AMP-Activated Protein Kinases/metabolism , Adaptation, Physiological/physiology , Adult , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Nucleus/metabolism , Cell Nucleus/physiology , Cross-Over Studies , Glycogen/metabolism , Humans , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , NFATC Transcription Factors/metabolism , Organelle Biogenesis , PPAR alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction/physiology , Transcription Factors/metabolism
2.
J Appl Physiol (1985) ; 127(3): 713-725, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31246557

ABSTRACT

Exercise training performed with lowered muscle glycogen stores can amplify adaptations related to oxidative metabolism, but it is not known if this is affected by the "train-low" strategy used (i.e., once-daily versus twice-a-day training). Fifteen healthy men performed 3 wk of an endurance exercise (100-min) followed by a high-intensity interval exercise 2 (twice-a-day group, n = 8) or 14 h (once-daily group, n = 7) later; therefore, the second training session always started with low muscle glycogen in both groups. Mitochondrial efficiency (state 4 respiration) was improved only for the twice-a-day group (group × training interaction, P < 0.05). However, muscle citrate synthase activity, mitochondria, and lipid area in intermyofibrillar and subsarcolemmal regions, and PGC1α, PPARα, and electron transport chain relative protein abundance were not altered with training in either group (P > 0.05). Markers of aerobic fitness (e.g., peak oxygen uptake) were increased, and plasma lactate, O2 cost, and rating of perceived exertion during a 100-min exercise task were reduced in both groups, although the reduction in rating of perceived exertion was larger in the twice-a-day group (group × time × training interaction, P < 0.05). These findings suggest similar training adaptations with both training low approaches; however, improvements in mitochondrial efficiency and perceived effort seem to be more pronounced with twice-a-day training.NEW & NOTEWORTHY We assessed, for the first time, the differences between two "train-low" strategies (once-daily and twice-a-day) in terms of training-induced molecular, functional, and morphological adaptations. We found that both strategies had similar molecular and morphological adaptations; however, only the twice-a-day strategy increased mitochondrial efficiency and had a superior reduction in the rating of perceived exertion during a constant-load exercise compared with once-daily training. Our findings provide novel insights into skeletal muscle adaptations using the "train-low" strategy.


Subject(s)
Adaptation, Physiological , Endurance Training , High-Intensity Interval Training , Mitochondria, Muscle/enzymology , Organelle Biogenesis , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Adult , Cell Respiration , Citrate (si)-Synthase/metabolism , Electron Transport Chain Complex Proteins/metabolism , Healthy Volunteers , Humans , Male , Mitochondria, Muscle/ultrastructure , Young Adult
3.
Scand J Med Sci Sports ; 29(5): 651-662, 2019 May.
Article in English | MEDLINE | ID: mdl-30672619

ABSTRACT

PURPOSE: We tested the hypothesis that carbohydrate ingestion during exercise improves time trial (TT) performance and that this carbohydrate-induced improvement is greater when carbohydrates are ingested during exercise in a fasted rather than a fed state. METHODS: Nine males performed 105 minutes of constant-load exercise (50% of the difference between the first and second lactate thresholds), followed by a 10-km cycling TT. Exercise started at 9 am, 3 hours after either breakfast (FED, 824 kcal, 67% carbohydrate) or a 15-hour overnight fast (FAST). Before exercise, after every 15 minutes of exercise and at 5 km of the TT, participants ingested 2 mL kg-1 body mass of a non-caloric sweetened solution containing either carbohydrate (8% of maltodextrin, CHO) or placebo (0% carbohydrate, PLA). RESULTS: Irrespective of the fasting state, when carbohydrate was ingested during exercise, the rating of perceived exertion (RPE) was lower throughout the constant-load exercise, while the plasma glucose concentration and carbohydrate oxidation were higher during the last stages of the constant-load exercise (P < 0.05). Consequently, TT performance was faster when carbohydrate was ingested during exercise (18.5 ± 0.3 and 18.7 ± 0.4 minutes for the FEDCHO and FASTCHO conditions, respectively) than when the placebo was ingested during exercise (20.2 ± 0.8 and 21.7 ± 1.4 minutes for the FEDPLA and FASTPLA conditions, respectively), regardless of fasting. CONCLUSION: These findings indicate that even when breakfast is provided before exercise, carbohydrate ingestion during exercise is still beneficial for exercise performance. However, ingesting carbohydrate during exercise can overcome a lack of breakfast.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Dietary Carbohydrates/administration & dosage , Fasting , Sports Nutritional Physiological Phenomena , Adult , Blood Glucose/analysis , Carbohydrate Metabolism , Double-Blind Method , Humans , Male , Physical Exertion , Young Adult
4.
Appl Physiol Nutr Metab ; 42(11): 1127-1134, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28658582

ABSTRACT

While nitrate supplementation influences oxygen uptake (V̇O2) response to exercise, this effect may be intensity dependent. The purpose of this study was to investigate the effect of acute nitrate supplementation on V̇O2 response during different exercise intensity domains in humans. Eleven men ingested 10 mg·kg-1 body mass (8.76 ± 1.35 mmol) of sodium nitrate or sodium chloride (placebo) 2.5 h before cycling at moderate (90% of gas exchange threshold; GET), heavy (GET + 40% of the difference between GET and peak oxygen uptake (V̇O2peak), Δ 40) or severe (GET + 80% of the difference between GET and V̇O2peak, Δ 80) exercise intensities. Volunteers performed exercise for 10 min (moderate), 15 min (heavy) or until exhaustion (severe). Acute nitrate supplementation had no effect on any V̇O2 response parameters during moderate and severe exercise intensities. However, the V̇O2 slow amplitude (nitrate: 0.93 ± 0.36 L·min-1 vs. placebo: 1.13 ± 0.59 L·min-1, p = 0.04) and V̇O2 slow gain (nitrate: 5.81 ± 2.37 mL·min-1·W-1 vs. placebo: 7.09 ± 3.67 mL·min-1·W-1, p = 0.04) were significantly lower in nitrate than in placebo during the heavy exercise intensity. There was no effect of nitrate on plasma lactate during any exercise intensity (p > 0.05). Time to exhaustion during the severe exercise intensity was also not affected by nitrate (p > 0.05). In conclusion, acute nitrate supplementation reduced the slow component of V̇O2 only when performing heavy-intensity exercise, which might indicate an intensity-dependent effect of nitrate on V̇O2 response.


Subject(s)
Exercise , Nitrates/administration & dosage , Oxygen Consumption/drug effects , Adult , Body Mass Index , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Humans , Lactic Acid/blood , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Sodium Chloride/administration & dosage , Surveys and Questionnaires , Young Adult
5.
PLoS One ; 11(1): e0145733, 2016.
Article in English | MEDLINE | ID: mdl-26727499

ABSTRACT

PURPOSE: The aim of the current study is to describe the functionality of free software developed for energy system contributions and energy expenditure calculation during exercise, namely GEDAE-LaB. METHODS: Eleven participants performed the following tests: 1) a maximal cycling incremental test to measure the ventilatory threshold and maximal oxygen uptake (V̇O2max); 2) a cycling workload constant test at moderate domain (90% ventilatory threshold); 3) a cycling workload constant test at severe domain (110% V̇O2max). Oxygen uptake and plasma lactate were measured during the tests. The contributions of the aerobic (AMET), anaerobic lactic (LAMET), and anaerobic alactic (ALMET) systems were calculated based on the oxygen uptake during exercise, the oxygen energy equivalents provided by lactate accumulation, and the fast component of excess post-exercise oxygen consumption, respectively. In order to assess the intra-investigator variation, four different investigators performed the analyses independently using GEDAE-LaB. A direct comparison with commercial software was also provided. RESULTS: All subjects completed 10 min of exercise at moderate domain, while the time to exhaustion at severe domain was 144 ± 65 s. The AMET, LAMET, and ALMET contributions during moderate domain were about 93, 2, and 5%, respectively. The AMET, LAMET, and ALMET contributions during severe domain were about 66, 21, and 13%, respectively. No statistical differences were found between the energy system contributions and energy expenditure obtained by GEDAE-LaB and commercial software for both moderate and severe domains (P > 0.05). The ICC revealed that these estimates were highly reliable among the four investigators for both moderate and severe domains (all ICC ≥ 0.94). CONCLUSION: These findings suggest that GEDAE-LaB is a free software easily comprehended by users minimally familiarized with adopted procedures for calculations of energetic profile using oxygen uptake and lactate accumulation during exercise. By providing availability of the software and its source code we hope to facilitate future related research.


Subject(s)
Exercise , Software , Adult , Humans , Oxygen Consumption , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL